For patients with chronic, moderate to severe pain

MORE TIME WITH FRIENDS

True, 24-hour pain control with QD dosing helps patients get back to active living.

Sustained 24-hour pain control day after day, week after week.

45% mean reduction in daily pain scores at end of titration.

Consistent improvement in physical and social functioning.

Improved quality and duration of sleep.

30 days = 30 doses.

Important Safety Information

AVINZA® capsules are a modified-release formulation of morphine sulfate indicated for opioid-naive patients for the relief of moderate to severe pain requiring around-the-clock opioid therapy for an extended period of time. AVINZA® capsules are not to be administered whole or in the contents of the capsules. Sprinkle on apple sauce. The capsule beads must be lost in cereals, on a diet designed to reduce the risk of rapid release and absorption of a potentially fatal dose of morphine. Patients must not consume alcoholic beverages while on AVINZA® therapy. Patients must not use prescription or nonprescription medications containing alcohol while on AVINZA® therapy. Consumption of alcohol while taking AVINZA® may result in the rapid release and absorption of a potentially fatal dose of morphine. The most common adverse events reported with administration of AVINZA® were constipation, nausea, vomiting, diarrhea, dyspepsia, and anorexia. Deaths occurred in patients treated for pain due to underlying malignancy. Serious adverse events caused by morphine include respiratory depression, apnea, and, in a lesser degree, circulatory depression, hypotension, shock, and cardiac arrest. AVINZA® is contraindicated in patients with known hypersensitivity to morphine, morphine salts, or any components of the product. AVINZA® is contraindicated in patients with respiratory depression in the absence of resuscitative measures available to the patient in case of respiratory depression and should be used with extreme caution in patients with respiratory depression. AVINZA®, like all opioids, is contraindicated in patients who have or are suspected of having jaundice. Morphine should be used with extreme caution in patients with chronic obstructive pulmonary disease or COPD who are taking AVINZA® for the relief of moderate to severe pain. AVINZA® capsules are not to be administered whole or in the contents of the capsules. Sprinkle on apple sauce. The capsule beads must be lost in cereals, on a diet designed to reduce the risk of rapid release and absorption of a potentially fatal dose of morphine. Patients must not consume alcoholic beverages while on AVINZA® therapy. Patients must not use prescription or nonprescription medications containing alcohol while on AVINZA® therapy. Consumption of alcohol while taking AVINZA® may result in the rapid release and absorption of a potentially fatal dose of morphine. The daily dose of AVINZA® must be limited to a maximum of 1600 mg/day. AVINZA® doses of over 1600 mg/day contain a quantity of fumaric acid that has not been demonstrated to be safe, and which may result in serious renal toxicity (see WARNING). The AVINZA® and OxyContin® capsules are to be swallowed whole. The capsule beads are not to be sprinkled on apple sauce. The capsule contents of the AVINZA® and OxyContin® capsules must not be lost in cereals, on a diet designed to reduce the risk of rapid release and absorption of a potentially fatal dose of morphine. Patients must not consume alcoholic beverages while on AVINZA® therapy. Avoid alcohol while taking AVINZA®. Consumption of alcohol while taking AVINZA® may result in the rapid release and absorption of a potentially fatal dose of morphine.

GUEST EDITORIAL

Fentanyl: Are we paying too high a price?...123

Mazen K. Seghrouchni, MD, MPH

ORIGINAL ARTICLES

Prevalence of opioid dependence in spine surgery patients and correlation with length of stay...127

AHMAD AL-JADYAL, MD

Opioid management in the postoperative setting has not been evaluated. AVINZA® is not indicated for postoperative use. If the patient has been receiving the drug prior to surgery, the pre-surgical dose may be appropriate once the patient is able to take the drug by mouth.

AVINZA® capsules are a modified-release formulation of morphine sulfate indicated for opioid-naive patients for the relief of moderate to severe pain requiring around-the-clock opioid therapy for an extended period of time. AVINZA® capsules are not to be administered whole or in the contents of the capsules. Sprinkle on apple sauce. The capsule beads must be lost in cereals, on a diet designed to reduce the risk of rapid release and absorption of a potentially fatal dose of morphine. Patients must not consume alcoholic beverages while on AVINZA® therapy. Patients must not use prescription or nonprescription medications containing alcohol while on AVINZA® therapy. Consumption of alcohol while taking AVINZA® may result in the rapid release and absorption of a potentially fatal dose of morphine. The most common adverse events reported with administration of AVINZA® were constipation, nausea, vomiting, diarrhea, dyspepsia, and anorexia. Deaths occurred in patients treated for pain due to underlying malignancy. Serious adverse events caused by morphine include respiratory depression, apnea, and, in a lesser degree, circulatory depression, hypotension, shock, and cardiac arrest. AVINZA® is contraindicated in patients with known hypersensitivity to morphine, morphine salts, or any components of the product. AVINZA® is contraindicated in patients with respiratory depression in the absence of resuscitative measures available to the patient in case of respiratory depression. AVINZA®, like all opioids, is contraindicated in patients who have or are suspected of having jaundice. Morphine should be used with extreme caution in patients with chronic obstructive pulmonary disease or COPD who are taking AVINZA® for the relief of moderate to severe pain. AVINZA® capsules are not to be administered whole or in the contents of the capsules. Sprinkle on apple sauce. The capsule beads must be lost in cereals, on a diet designed to reduce the risk of rapid release and absorption of a potentially fatal dose of morphine. Patients must not consume alcoholic beverages while on AVINZA® therapy. Avoid alcohol while taking AVINZA®. Consumption of alcohol while taking AVINZA® may result in the rapid release and absorption of a potentially fatal dose of morphine. The daily dose of AVINZA® must be limited to a maximum of 1600 mg/day. AVINZA® capsules of over 1600 mg/day contain a quantity of fumaric acid that has not been demonstrated to be safe, and which may result in serious renal toxicity (see WARNING). The AVINZA® and OxyContin® capsules are to be swallowed whole. The capsule beads are not to be sprinkled on apple sauce. The capsule contents of the AVINZA® and OxyContin® capsules must not be lost in cereals, on a diet designed to reduce the risk of rapid release and absorption of a potentially fatal dose of morphine. Patients must not consume alcoholic beverages while on AVINZA® therapy. Avoid alcohol while taking AVINZA®. Consumption of alcohol while taking AVINZA® may result in the rapid release and absorption of a potentially fatal dose of morphine.

AVINZA® capsules are a modified-release formulation of morphine sulfate indicated for opioid-naive patients for the relief of moderate to severe pain requiring around-the-clock opioid therapy for an extended period of time. AVINZA® capsules are not to be administered whole or in the contents of the capsules. Sprinkle on apple sauce. The capsule beads must be lost in cereals, on a diet designed to reduce the risk of rapid release and absorption of a potentially fatal dose of morphine. Patients must not consume alcoholic beverages while on AVINZA® therapy. Avoid alcohol while taking AVINZA®. Consumption of alcohol while taking AVINZA® may result in the rapid release and absorption of a potentially fatal dose of morphine.

AVINZA® capsules are a modified-release formulation of morphine sulfate indicated for opioid-naive patients for the relief of moderate to severe pain requiring around-the-clock opioid therapy for an extended period of time. AVINZA® capsules are not to be administered whole or in the contents of the capsules. Sprinkle on apple sauce. The capsule beads must be lost in cereals, on a diet designed to reduce the risk of rapid release and absorption of a potentially fatal dose of morphine. Patients must not consume alcoholic beverages while on AVINZA® therapy. Avoid alcohol while taking AVINZA®. Consumption of alcohol while taking AVINZA® may result in the rapid release and absorption of a potentially fatal dose of morphine.
For the sudden strike of breakthrough pain (BTP) in patients with cancer,

FENTORA optimizes onset of relief

FENTORA (fentanyl/buccal tablet) optimizes onset of relief.

PHYSICIANS AND OTHER HEALTHCARE PROVIDERS MUST BECOME FAMILIAR WITH THE IMPORTANT WARNINGS IN THIS LABEL.

For more information about **FENTORA**, please call Cephalon Professional Services and Medical Information at 1-800-896-5855 or visit www.FENTORA.com.

Serious adverse events associated with all opioids are respiratory depression (potentially leading to apnea or respiratory arrest), circulatory depression, hypotension, and shock. All patients should be followed for symptoms of respiratory depression.

Respiratory depression and hypotension are the most common (≥10%) adverse events observed in all **FENTORA** clinical trials. Seizures, syncope, telemarketing, flushing, bradycardia, and death have been reported. The most common (>10%) adverse events associated with use over 28 days were fatigue, headache, constipation, somnolence, anemia, dehydration, and application site abnormalities. Application site reactions tended to occur early in treatment, were self-limited, and resulted in treatment discontinuation for only 2% of patients. Most side effects were mild to moderate in severity.

No attempt was made to correct for concomitant use of around-the-clock opioids or cancer-related symptoms.

Please see boxed warning and brief summary of prescribing information on adjacent pages.

FENTORA contains fentanyl, an opioid agonist and a Schedule II controlled substance, with an abuse liability similar to other opioid analgesics. **FENTORA** can be abused in a manner similar to other opioid agonists, legal or illicit. This should be considered when prescribing or dispensing **FENTORA** in situations where the physician or pharmacist is concerned about an increased risk of misuse, abuse or diversion. Schedule II opioid substances which include morphine, oxycodone, hydrocodone, oxymorphone, and methadone have the highest potential for abuse and risk of fatal overdose due to respiratory depression.

FENTORA is indicated for the management of breakthrough pain in patients with cancer who are already receiving and who are tolerant to opioid therapy for their ongoing cancer pain. Patients considered opioid tolerant are those who are taking at least 60 mg of oral morphine/day, at least 25 mcg of transdermal fentanyl/hour, at least 30 mg of oxycodone daily, at least 8 mg of oral hydromorphone daily, or an equianalgesic dose of another opioid for a week or longer.

Because life-threatening respiratory depression could occur at any dose in opioid non-tolerant patients, **FENTORA** is contraindicated in the management of acute or postoperative pain. This product is not indicated for use in opioid non-tolerant patients.

Patients and their caregivers must be instructed that **FENTORA** contains a medicine in an amount which can be fatal to a child. Patients and their caregivers must be instructed to keep all tablets out of the reach of children. (See Information for Patients and Their Caregivers for disposal instructions.)

Due to the higher bioavailability of fentanyl in **FENTORA**, when converting patients from other oral fentanyl products, including oral transmucosal fentanyl citrate (OTFC and Actiq®), to **FENTORA**, do not substitute **FENTORA** on a mcg per mcg basis. Adjust doses as appropriate. (See DOSAGE AND ADMINISTRATION.)

FENTORA is intended to be used only in the care of opioid tolerant cancer patients and only by healthcare professionals who are knowledgeable of and skilled in the use of Schedule II opioids to treat cancer pain.
FENTORA® (fentanyl buccal tablet) C-II

BRIEF SUMMARY: Please see full prescribing information.

PHYSICIANS AND OTHER HEALTHCARE PROVIDERS MUST BECOME FAMILIAR WITH THE IMPORTANT WARNINGS AND CONTRAINDICATIONS. FENTORA contains fentanyl, an opioid agonist and a Schedule II controlled substance, with an abuse liability similar to other opioid agonists. FENTORA can be abused in a manner similar to other opioid agonists and may be subject to abuse or dependence. In situations where the physician or pharmacist is concerned about an increased risk of misuse, abuse or dependence, Schedule II controlled substances, like fentanyl, should be dispensed in quantities consistent with the clinical need of the patient. Alcohol, benzodiazepines, morphine, and oxymorphone have the highest potential for abuse and risk of fatal overdose due to respiratory depression.

A decreased urge to breathe or a decreased rate of ventilation due to the respiratory depression may be the first indication of the onset of opioid overdose. In these situations, the patient should be immediately ventilated, assisted ventilatory support should be provided, and respiratory depression should be treated accordingly. The use of concomitant CNS active drugs requires special patient care and observation (see WARNINGS). Life-threatening hypoventilation could occur at any dose in patients not on a concomitant opioid for their pain. FENTORA is intended to be used only in the care of opioid tolerant patients and only by healthcare professionals who are knowledgeable of and skilled in the use of Schedule II opioids to treat cancer pain.

INDICATIONS AND USAGE (See BOXED WARNING and CONTRAINDICATIONS) FENTORA is intended to be used in the management of breakthrough pain in patients with cancer who are already receiving and who are tolerant to opioid therapy for their underlying persistent cancer pain. Patients should be transitioned to FENTORA from other opioid analgesics. FENTORA may be used concurrently with concomitant CNS active drugs (e.g., benzodiazepines, barbiturates, alcohols, and certain psychoactive substances) and provides an alternative treatment option for patients who are being titrated with caution in patients with chronic obstructive pulmonary disease or pre-existing medical conditions predisposing them to respiratory depression. In such patients, the use of FENTORA may further decrease respiratory drive to the point of respiratory failure. FENTORA is contraindicated in patients with known intolerance or sensitivity to fentanyl. FENTORA is contraindicated in patients with known intolerance to any of its components or the drug fentanyl. FENTORA is contraindicated in the management of acute or postoperative pain. This product must not be used to provide inadequate postoperative analgesia in patients with known intolerance to the analgesic properties of transdermal fentanyl/hour, at least 30 mg of oxycodone daily, at least 8 mg of oral hydromorphone daily or an equianalgesic dose of another opioid for a week or longer.

Route of Administration: FENTORA is contraindicated in opioid non-tolerant patients. FENTORA is contraindicated in the management of acute or postoperative pain. This product must not be used to provide inadequate postoperative analgesia in patients with known intolerance to the analgesic properties of transdermal fentanyl/hour, at least 30 mg of oxycodone daily, at least 8 mg of oral hydromorphone daily or an equianalgesic dose of another opioid for a week or longer.

Route of Administration: FENTORA is contraindicated in opioid non-tolerant patients. FENTORA is contraindicated in the management of acute or postoperative pain. This product must not be used to provide inadequate postoperative analgesia in patients with known intolerance to the analgesic properties of transdermal fentanyl/hour, at least 30 mg of oxycodone daily, at least 8 mg of oral hydromorphone daily or an equianalgesic dose of another opioid for a week or longer.

Route of Administration: FENTORA is contraindicated in opioid non-tolerant patients. FENTORA is contraindicated in the management of acute or postoperative pain. This product must not be used to provide inadequate postoperative analgesia in patients with known intolerance to the analgesic properties of transdermal fentanyl/hour, at least 30 mg of oxycodone daily, at least 8 mg of oral hydromorphone daily or an equianalgesic dose of another opioid for a week or longer.

Route of Administration: FENTORA is contraindicated in opioid non-tolerant patients. FENTORA is contraindicated in the management of acute or postoperative pain. This product must not be used to provide inadequate postoperative analgesia in patients with known intolerance to the analgesic properties of transdermal fentanyl/hour, at least 30 mg of oxycodone daily, at least 8 mg of oral hydromorphone daily or an equianalgesic dose of another opioid for a week or longer.

Route of Administration: FENTORA is contraindicated in opioid non-tolerant patients. FENTORA is contraindicated in the management of acute or postoperative pain. This product must not be used to provide inadequate postoperative analgesia in patients with known intolerance to the analgesic properties of transdermal fentanyl/hour, at least 30 mg of oxycodone daily, at least 8 mg of oral hydromorphone daily or an equianalgesic dose of another opioid for a week or longer. FENTORA is contraindicated in patients with known intolerance or sensitivity to fentanyl. FENTORA is contraindicated in patients with known intolerance to any of its components or the drug fentanyl. FENTORA is contraindicated in patients with known intolerance to any of its components or the drug fentanyl.
Table 5. Adverse Events Which Occurred During Titration at a Frequency of ≥5%.

<table>
<thead>
<tr>
<th>System Organ Class</th>
<th>Adverse Event</th>
<th>200 mcg (N=6)</th>
<th>300 mcg (N=11)</th>
<th>400 mcg (N=24)</th>
<th>600 mcg (N=50)</th>
<th>800 mcg (N=66)</th>
<th>Total (N=201)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory, thoracic, and mediastinal disorders</td>
<td>Dyspnea</td>
<td>1 (25)</td>
<td>2 (18)</td>
<td>2 (8)</td>
<td>6 (12)</td>
<td>6 (9)</td>
<td>17 (8)</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Somnolence</td>
<td>2 (11)</td>
<td>0</td>
<td>3 (7)</td>
<td>2 (4)</td>
<td>7 (12)</td>
<td>18 (9)</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Fatigue</td>
<td>3 (9)</td>
<td>2 (6)</td>
<td>3 (13)</td>
<td>5 (10)</td>
<td>19 (15)</td>
<td>43 (17)</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Vomiting</td>
<td>3 (11)</td>
<td>1 (3)</td>
<td>3 (7)</td>
<td>4 (8)</td>
<td>9 (15)</td>
<td>23 (12)</td>
</tr>
<tr>
<td>Hypersensitivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td>1 (3)</td>
<td>0</td>
<td>2 (4)</td>
<td>4 (8)</td>
<td>5 (9)</td>
<td>16 (8)</td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td>1 (2)</td>
<td>0</td>
<td>2 (4)</td>
<td>3 (6)</td>
<td>4 (7)</td>
<td>12 (6)</td>
<td></td>
</tr>
<tr>
<td>Constipation</td>
<td>4 (12)</td>
<td>4 (13)</td>
<td>3 (11)</td>
<td>4 (8)</td>
<td>8 (13)</td>
<td>24 (12)</td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Dizziness</td>
<td>4 (12)</td>
<td>1 (3)</td>
<td>6 (13)</td>
<td>7 (13)</td>
<td>21 (11)</td>
<td>40 (19)</td>
</tr>
<tr>
<td>Hypersensitivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td>8 (25)</td>
<td>1 (3)</td>
<td>3 (7)</td>
<td>4 (8)</td>
<td>9 (15)</td>
<td>24 (12)</td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td>3 (6)</td>
<td>1 (2)</td>
<td>3 (6)</td>
<td>3 (6)</td>
<td>8 (13)</td>
<td>17 (8)</td>
<td></td>
</tr>
<tr>
<td>Hypersensitivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td>1 (2)</td>
<td>0</td>
<td>3 (7)</td>
<td>3 (6)</td>
<td>4 (7)</td>
<td>13 (6)</td>
<td></td>
</tr>
<tr>
<td>Respiratory, thoracic, and mediastinal disorders</td>
<td>Cough</td>
<td>1 (2)</td>
<td>2 (4)</td>
<td>2 (4)</td>
<td>4 (8)</td>
<td>7 (12)</td>
<td>16 (8)</td>
</tr>
</tbody>
</table>

Table 6 lists the success of dose escalation events with an overall frequency of ≥5% within the total population that occurred after a successful dose had been determined.

Table 6. Adverse Events Which Occurred During Long-Term Treatment at a Frequency of ≥5%.

<table>
<thead>
<tr>
<th>System Organ Class</th>
<th>Adverse Event</th>
<th>200 mcg (N=6)</th>
<th>300 mcg (N=11)</th>
<th>400 mcg (N=24)</th>
<th>600 mcg (N=50)</th>
<th>800 mcg (N=66)</th>
<th>Total (N=201)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychiatric disorders</td>
<td>Insomnia</td>
<td>2 (11)</td>
<td>0</td>
<td>2 (4)</td>
<td>2 (4)</td>
<td>6 (10)</td>
<td>14 (7)</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Somnolence</td>
<td>2 (11)</td>
<td>0</td>
<td>3 (7)</td>
<td>2 (4)</td>
<td>7 (12)</td>
<td>18 (9)</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Fatigue</td>
<td>3 (9)</td>
<td>2 (6)</td>
<td>3 (13)</td>
<td>5 (10)</td>
<td>19 (15)</td>
<td>43 (17)</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Vomiting</td>
<td>3 (11)</td>
<td>1 (3)</td>
<td>3 (7)</td>
<td>4 (8)</td>
<td>9 (15)</td>
<td>23 (12)</td>
</tr>
<tr>
<td>Hypersensitivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td>1 (3)</td>
<td>0</td>
<td>2 (4)</td>
<td>4 (8)</td>
<td>5 (9)</td>
<td>16 (8)</td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td>1 (2)</td>
<td>0</td>
<td>2 (4)</td>
<td>3 (6)</td>
<td>4 (7)</td>
<td>12 (6)</td>
<td></td>
</tr>
<tr>
<td>Constipation</td>
<td>4 (12)</td>
<td>4 (13)</td>
<td>3 (11)</td>
<td>4 (8)</td>
<td>8 (13)</td>
<td>24 (12)</td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Dizziness</td>
<td>4 (12)</td>
<td>1 (3)</td>
<td>6 (13)</td>
<td>7 (13)</td>
<td>21 (11)</td>
<td>40 (19)</td>
</tr>
<tr>
<td>Hypersensitivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td>8 (25)</td>
<td>1 (3)</td>
<td>3 (7)</td>
<td>4 (8)</td>
<td>9 (15)</td>
<td>24 (12)</td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td>3 (6)</td>
<td>1 (2)</td>
<td>3 (6)</td>
<td>3 (6)</td>
<td>8 (13)</td>
<td>17 (8)</td>
<td></td>
</tr>
<tr>
<td>Hypersensitivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td>1 (2)</td>
<td>0</td>
<td>3 (7)</td>
<td>3 (6)</td>
<td>4 (7)</td>
<td>13 (6)</td>
<td></td>
</tr>
<tr>
<td>Respiratory, thoracic, and mediastinal disorders</td>
<td>Cough</td>
<td>1 (2)</td>
<td>2 (4)</td>
<td>2 (4)</td>
<td>4 (8)</td>
<td>7 (12)</td>
<td>16 (8)</td>
</tr>
</tbody>
</table>
Journal of Opioid Management™
A medical journal for proper and adequate use

Editor-in-Chief, Robert E. Enck, MD
Professor of Medicine, Assistant Division Chief for Clinical Activities, Division of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania.

Editorial Review Board

Linda Gibbs Alley, PhD, RN
Epidemiologist, Cancer Surveillance Branch, Division of Cancer Prevention and Control, Centers for Disease Control and Prevention, Atlanta, Georgia.

Lainie Andrew, PhD, MA
Pain Psychologist, Craniofacial Pain Center, and Clinical Assistant Professor, Tufts Dental School, Boston, Massachusetts.

Antonios Andronikou, PhD
Executive Director, The Cyprus Anti-Cancer Society, Strovolos, Cyprus.

Robert L. Barkin, MBA, PharmD, FCP, DAAPM
Associate Professor, Departments of Anesthesiology, Family Medicine, Pharmacology, and Psychology, Rush University Medical Center, Chicago, Illinois.

Steven J. Baumrucker, MD, FAAA, FAAAHPM
Medical Director, Holston Valley Palliative Care, Wellmont Health System; Medical Director, Palliative Medicine Associates; Medical Director, Adventa Hospice; Assistant Clinical Professor, ETSU College of Medicine, Kingsport, Tennessee.

David M. Benjamin, PhD, MS
Clinical Pharmacologist and Toxicologist, Chestnut Hill, Massachusetts.

Ramzin M. Benyamin, MD, DABPM, FIPP
President, Millennium Pain Center, Bloomington, Illinois.

Jennifer Bolen, JD
Founder, The Legal Side of Pain®, Knoxville, Tennessee.

Eduardo D. Bruera, MD
Chairman, University of Texas MD Anderson Cancer Center, Houston, Texas.

Allen W. Burton, MD
Associate Professor and Section Chief of Cancer Pain Management, The University of Texas, MD Anderson Cancer Center, Houston, Texas.

Asokumar Buvanendran, MD
Department of Anesthesiology, Rush University Medical Center, Chicago, Illinois.

Guy A. Caldwell, PhD
Assistant Professor of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama.

Michael E. Clark, PhD
Clinical Director, Chronic Pain Rehabilitation Program, James A. Haley Veterans Hospital, Tampa, Florida.

Carol Curtiss, RN, MSN
Clinical Nurse Specialist Consultant, Curtiss Consulting, Greenfield, Massachusetts.

Mellar P. Davis, MD, FCCP
Medical Director, The Harry R. Horvitz Center for Palliative Medicine, Cleveland Clinic Taussig Cancer Center, Cleveland, Ohio.

Franco De Conno, MD, FRCP
Director, National Cancer Institute of Milan Division of Rehabilitation, Milan, Italy.

Jon Paul Dobson, PhD, MSc, BSc
Professor of Biophysics and Biomedical Engineering, Keele University Institute for Science and Technology in Medicine, Harsthill, Stoke-on-Trent, United Kingdom.

Erin A. Egan, MD, JD
Clinical Instructor, Neiswanger Institute for Bioethics and Health Policy, Loyola University Medical Center, Maywood, Illinois.

Robert E. Enck, MD
Professor of Medicine, Assistant Division Chief for Clinical Activities, Division of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania.

Gilbert J. Fanciullo, MD
Associate Professor of Anesthesiology, Pain Management Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire.

Kathleen W. Faulkner, MD
Medical Director, Beacon Hospice, Boston, Massachusetts.

John W. Finn, MD, FAAHPM
Chief Medical Director, Hospice of Michigan, Maggie Allesee Center for Quality of Life, Detroit, Michigan.

David A. Fishbain, MD, FAPA
Professor of Psychiatry, Adjunct Professor of Neurological Surgery and Anesthesiology, University of Miami, Miami, Florida.

Christopher M. Flores, PhD
Biology Team Leader and Research Fellow, Analgesics Team, Drug Discovery, Johnson & Johnson Pharmaceutical R & D, Spring House, Pennsylvania.

Sarah Elizabeth Friebert, MD
Director, Akron Children’s Hospital, Haslinger Pediatric Palliative Care Division, Akron, Ohio.

Frederick J. Goldstein, PhD, FCP
Professor of Clinical Pharmacology, Coordinator of Pharmacology, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania.

Jose Antonio Saraiva Ferraz Goncalves, MD
Medical Director, Palliative Care Unit, Portuguese Institute of Oncology, Porto, Portugal.

Gregory Paul Grameelspacher, MD
Associate Professor of Medicine, Indiana University School of Medicine, Bloomington, Indiana.

Carmen Renee Green, MD
Associate Professor, Department of Anesthesiology, University of Michigan Health System, Ann Arbor, Michigan.

Daniel L. Handel, MD
Staff Clinician, Pain and Palliative Care Service, National Institutes of Health, Bethesda, Maryland.

Craig T. Hartrick, MD, DABPM, FIPP
Anesthesiology Research, William Beaumont Hospital, Royal Oak, Michigan.

Christopher M. Herndon, PharmD, BCPS
Assistant Professor, Department of Pharmacy Practice, Southern Illinois University Edwardsville, Edwardsville, Illinois.

Bruce P. Himelstein, MD
Associate Professor of Pediatrics; Director of Palliative Care Program, Pain and Palliative Care Center, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin.

John Alexander Hopper, MD
Department of Pediatrics, Wayne State University, University Health Center, Detroit, Michigan.

Robert W. Hutchison, RPH, PharmD
Presbyterian Hospital of Dallas; Assistant Professor, School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, Texas.

James A. Inciardi, PhD
Director and Professor, Center for Drug and Alcohol Studies, University of Delaware, Newark, Delaware.
Barbara E. Indech, LLM, JD, MA, BS
Legal-Regulatory Consultant, Newton, Massachusetts.

“PJ” Pamela R. Jennings, RN
Pain Medicine and Palliative Care Coordinator, Veteran’s Administration Medical Center, Salt Lake City, Utah.

Sandra Hanneken Johnson, JD, LLM
Professor of Law and Tenet Chair in Health Care Law and Ethics, Saint Louis University School of Law, St. Louis, Missouri.

Marshall B. Kapp, JD, MPH
Dr. Arthur W. Grayson Distinguished Professor of Law, School of Law, Southern Illinois University, Carbondale, Illinois.

Sherry Anne King, MD, CMD
Vice President, Medical Services Community Hospice of Northeast Florida, Jacksonville, Florida.

Ronald J. Kulich, PhD
Department of Anesthesia, Pain Center, Massachusetts General Hospital, Boston, Massachusetts.

Ruth Lourdes R. Lagman, MD, MPH
Harry R. Horvitz Center for Palliative Medicine, Cleveland Clinic Foundation, Cleveland, Ohio.

John D. Loeser, MD
Attending Staff, University of Washington Medical Center, Seattle, Washington.

Laurie Jean Lyckholm, MD
Division of Hematology/Oncology and Palliative Care Medicine, Virginia Commonwealth University, Richmond, Virginia.

Colin J. L. McCartney, MBChB, FRCA, FFARCSI, Director of Regional Anesthesia and Staff Anesthetist, Toronto Western Hospital, Toronto, Canada.

Danuta Mendelson, PhD, LLM, MA
Associate Professor, Deakin University School of Law, Burwood, Victoria, Australia.

Marcos Montagnini, MD, FACP
Medical Director, Palliative Care Program, Zablocki VA Medical Center, Milwaukee, Wisconsin.

Jonathan D. Moreno, PhD
Emily Davie and Joseph S. Kornfield Professor of Biomedical Ethics, Professor of Medical Education in Health Evaluation Sciences, Director, Center for Biomedical Ethics, Director, Masters Program in Bioethics, University of Virginia, Charlottesville, Virginia.

Natalie Moryl, MD
Director, Palliative Care Unit, Memorial Sloan-Kettering Cancer Center, New York, New York.

Alexander Ng, MB, ChB, MD, FRCA
Consultant in Anaesthesia, The Heart and Lung Centre, New Cross Hospital, Wolverhampton, West Midlands, United Kingdom.

Sean O’Mahony, MD
Medical Director, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York.

N. Suleyman Ozyalcin, MD
Department of Allogy, Istanbul University, Istanbul, Turkey.

Steven D. Passik, PhD
Associate Attending Psychologist, Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center New York, New York.

John F. Peppin, DO, FACP
The Pain Treatment Center of the Bluegrass Lexington, Kentucky.

Daryl Pullman, PhD
Associate Professor of Medical Ethics, Memorial University of Newfoundland, St. John’s, Newfoundland.

Lucas Radbruch, MD
Department of Palliative Medicine, University of Aachen, Aachen, Germany.

Suresh K. Reddy, MD
Associate Professor and Director of Fellowship Program, The University of Texas MD Anderson Cancer Center, Houston, Texas.

Gary M. Reisfield, MD
Assistant Professor; Director, Division of Palliative Medicine, University of Florida Health Science Center, Jacksonville, Florida.

Kenneth E. Rosenfeld, MD
Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, California.

Steven H. Sanders, PhD
Siskin Hospital for Physical Rehabilitation, Chattanooga, Tennessee.

Philip Harry Santa-Emma, MD
Medical Director, Mount Carmel Palliative Care & Hospital Services, Columbus, Ohio.

Valgerdur Sigurdardottir, MD
Consultant in Palliative Medicine, University Hospital of Iceland, Reykjavik, Iceland.

Paul Alexander Sloan, MD
Department of Anesthesiology, University of Kentucky Hospital, Lexington, Kentucky.

Lois Snyder, JD
Director, Center for Ethics and Professionalism, Philadelphia, Pennsylvania.

Richard C. Stephenson, MD
Director, Palliative Care Consult Service, Wake Forest University Baptist Medical Center, Winston-Salem, North Carolina.

David Teplin, PsyD, CPysych
Lead Clinical Psychologist, Ontario Addiction Treatment Centres/Canada Detox Centre, Richmond Hill, Ontario, Canada.

Knox H. Todd, MD, MPH
Director, Pain and Emergency Medicine Institute, Department of Emergency Medicine, Beth Israel Medical Center, Albert Einstein College of Medicine, New York, New York.

Alparslan Turan, MD
Assistant Professor, Trakya University Medical School, Edirne, Turkey.

Athina Vadalouca, MD
President, Greek Society of Palliative and Symptomatic Care, Athens, Greece.

Ricardo Vallejo, MD, PhD, FIPP
Director of Research Staff, Pain Medicine, Millennium Pain Center, Bloomington, Illinois.

Michael F. Weaver, MD, FASAM
Assistant Professor, Division of General Medicine and Primary Care and Division Addiction, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia.

Robin Fretwell Wilson, JD
Associate Professor, University of Maryland School of Law, Baltimore, Maryland.

Stephen J. Ziegler, PhD, JD
Assistant Professor of Public and Environmental Affairs, Indiana University—Purdue University Fort Wayne School of Public and Environmental Affairs, Fort Wayne, Indiana.

Michael Zimmermann, MD
Assistant Professor, Clinic for Anesthesiology, Intensive Medicine, and Pain Therapy, Johann Wolfgang Goethe University, Frankfurt, Germany.
INTRODUCTION

Fentanyl is an analgesic opioid that was introduced into medical practice in the 1960s. It has been commonly used for decades in anesthesia, sedation, and pain management. Along with nitrous oxide and thiopental, fentanyl is one of the anesthesiological drugs with the longest history of use. In fact, after about 50 years, it is still administered daily to millions of adult and pediatric patients. However, an increasing number of papers report that the use of fentanyl is correlated to unpleasant effects both in and out of clinical scenarios. Recently, The Lancet has focused on the drug’s use and effects, not only in patients but also in healthcare professionals, offering evidence of its increasingly prevalent role as a drug of abuse and overdose. In fact, the drug has become so strongly associated with abuse in recent years that it has earned the new moniker of “killer fentanyl.”\(^1,2\)

Given the large number of patients receiving the drug, as well as of physicians administering it (anesthesiologists, intensive care specialists, pain professionals, etc.), queries about the validity of these accusations are both warranted and expected.

ABUSE AND OVERDOSE: A GLOBAL PROBLEM

The prevalence of overdose deaths attributed to opioids is increasing throughout the world. Heroin is still the predominant illicit opioid of interest for toxicology laboratories because of its widespread availability and its ability to elicit respiratory depression and coma; but today, new, totally synthetic drugs are becoming an increasingly important subset of abused substances. Fentanyls, a family of very potent narcotic analgesics, are of particular concern. They first appeared on the streets in California in 1979 under the name “China White,” sold as heroin substitutes or used to lace street drugs.

It is likely that as efforts to restrict the importation of natural opiates and prevent diversion of pharmaceuticals have become more effective, fentanyls have become increasingly important drugs of abuse.\(^3\) The effects of fentanyl are indistinguishable from those produced by nasal inhalation of street heroin. In light of this, and because of its very low production costs, fentanyl is very attractive for the narcotics market.\(^4\)

Health workers began to notice a spike in fentanyl overdoses and deaths late last year, thanks to new, sophisticated toxicology and autopsy tests.\(^1\) At least 112 overdose deaths have been associated with the drug. No preexisting medical conditions were identified as possible risk factors in any of these recorded deaths. Although most of the fentanyl victims had a prior history of intravenous drug use, drugs such as morphine or codeine were not commonly found in their systems, which suggests that the victims had little or no opiate tolerance. It is probable that the general availability of the drug, rather than the potency of any particular analog, determined the incidence of overdose deaths.\(^5\) More than 20 years ago, in California, increased fentanyl use was detected as a new trend in drug use in a sample population of young users.\(^6\) In early 1992, the Office of the Chief Medical Examiner of the State of Maryland encountered 30 cases in which fentanyl was identified in postmortem examinations of victims.\(^7\)

Increases in fentanyl abuse are therefore a growing public health problem, with the risk that within a few years, fentanyl abuse could evolve into a problem of global epidemic proportions.\(^2\)

CLINICAL ASPECTS

As with other opioids, fentanyl use can induce opioid tolerance, physical dependence, and addiction. These consequences limit its applications for appropriate long-term use.

Cases of withdrawal syndrome related to fentanyl have been observed in both adult and pediatric patients in intensive care units (ICUs). There is an elevated incidence of abstinence syndrome in children in the pediatric ICU, owing to the interruption of fentanyl infusion and midazolam; this syndrome is related to fentanyl dose and time of use.\(^8\) Symptoms include systemic convulsions
with loss of consciousness. Acute withdrawal syndrome related to the administration of analgesic and sedative medications has also been observed in adult ICU patients, particularly in mechanically ventilated patients receiving extended ICU care (2-7 days).

Thanks to its highly lipophilic nature, fentanyl can be administered in the form of a transdermal patch to control pain. From 1997 to 2000, the Los Angeles County coroner’s toxicology laboratory encountered 25 cases involving fentanyl patches. Causes of death included 15 accidental, five natural, three suicidal, and two undetermined.

The number of fentanyl-related deaths increased between 2000 and 2002, and 19 out of 23 deaths attributed to fentanyl misuse or abuse were related to transdermal patches. Routes of administration included transdermal, transmucosal/oral, intravenous, and a combination of routes, suggesting that fentanyl is rapidly becoming a desirable opioid for street users, similar to oxycodone and methadone.

Pharmacogenomics—the study of genetic contributions to drug action—may aid in certifying fentanyl toxicity. As suggested in 92 percent of fentanyl-related deaths, toxicity may be partially due to cytochrome P450 (CYP) 3A4*1B and 3A5*3 variant alleles, resulting in variable fentanyl metabolism. In fact, postmortem/in vivo data have provided scientific evidence that CYP3A5 is involved in fentanyl metabolism, and that homozygous CYP3A5*5 causes impaired metabolism of fentanyl.

Large-dose fentanyl anesthesia induces prolonged suppression of natural killer (NK) cell cytotoxicity in patients undergoing abdominal surgery, and this increases the risk of tumor metastasis. In fact, suppression of NK cells at the time of surgery may induce tumor dissemination and the spread of metastases.

There are numerous problems for patients and healthcare providers regarding use, abuse, or overdose of fentanyl in anesthesia, intensive care, and pain therapy; these are summarized below. The quantity of related international research published in the last few decades is quite impressive.

Problems for patients include the following:

- dependence and withdrawal syndromes after long-term infusion in adults and children;
- muscle rigidity (increased large-trunk-muscle tone with decreased thoracic compliance);
- respiratory depression (inhibition of brain stem respiratory center);
- glottic closure (effects on vagal motor neurons with tonic vocal-fold closure and pharyngeal obstruction of airflow);
- nausea and vomiting (stimulation of brain stem chemoreceptor trigger zone);
- misperceptions of sexual abuse by critically ill patients;
- analgesic abuse; and
- improper intravenous injection of fentanyl derived from transdermal systems.

Problems in healthcare providers include the following:

- high risk of addiction for medical staff working with these drugs;
- dependence in anesthesia providers;
- substance abuse by anesthesiologists; and
- increased mortality resulting from overdose and abuse by healthcare professionals.

FENTANYL ADDICTION

Risk of addiction through occupational exposure to drugs of abuse is an important but relatively neglected public health problem. It is well known that second-hand inhalation of vapors from crack cocaine can be quite dangerous, but rarely has the alarm been raised about exposing anesthesiologists to secondhand fentanyl. To explain the high incidence of this problem, it has been hypothesized that aerosolization of anesthetics administered intravenously to patients in the operating room may be an unintended source of exposure for physicians.

Fentanyl has been detected in the air of cardiovascular operating rooms, and the highest concentrations were close to the patient’s mouth, where anesthesiologists sometimes work for hours. As with tobacco, second-hand exposure to opioids can inadvertently sensitize, increasing the risk of developing addiction, and brain changes may occur, leading to abuse, dependence, and behavioral disorders; these problems are more likely among anesthesiologists and surgeons. Moreover, there are many risk factors, such as psychiatric stress and a family history of substance use disorders, that are implicated in fentanyl addiction in healthcare professionals and anesthesiologists. Additionally, chemical impairment may be more common than usually thought in anesthesiologists, perhaps in part because of drug availability. This may contribute to the overrepresentation of certain specialties among physicians with addiction. The ends to which an individual motivated by an addicted
brain will go to obtain drugs to quench his or her chemical addiction has been described in fascinating detail.42

CONCLUSION

The introduction of a new drug into clinical practice is welcomed when it helps our efforts at improving a patient’s clinical course or the medical practice as a whole. Fentanyl's entrance into the anesthesiological setting, about 50 years ago, contributed greatly to the evolution of our science.

Half a century has passed since then, and clinical practice has undergone substantial evolution. Anesthesiology has witnessed rapid, continuous changes in anesthetic drugs, as well as inhalational and neuromuscular blocking drugs. But its very low price has made fentanyl an “evergreen,” and in today’s climate of cost consciousness, hospital administrations still push its use and avoid promoting newer and more specific opioids.2 Military units' interest in the toxic effects of fentanyl is also increasing, as suggested by the Dubrovka theater incident of 2002. The Russian military pumped a fentanyl-related compound into the theater two and a half days after it was seized by armed Chechen militants, who were holding 850 occupants hostage. Because of respiratory depression induced by the compound, all of the militants were killed—along with over 100 hostages.43

Fentanyl is implicated in complications, toxicity, addiction, abuse, overdose, and death in patients and healthcare professionals. The “gentlemanly” face of fentanyl has changed, and it is now becoming viewed as a potential killer. In light of its potentially fatal side effects and growing popularity as a street drug, maybe the widespread use of fentanyl should be reconsidered. Since legally related problems should also be taken into consideration, recommendations by various institutions for the limitation of fentanyl use could be devised.

REFERENCES

Vincenzo Fodale, MD, Aggregate Professor of Anesthesiology and Intensive Care, Department of Neuroscience, Psychiatric and Anesthesiological Sciences, University of Messina School of Medicine, Messina, Italy.
Manuela Romeo, MD, School of Medicine and Surgery, University of Messina, Messina, Italy.
Federica Mafra, MD, Research Residents Program, Anesthesia Intensive Care, Department of Neuroscience, Psychiatric and Anesthesiological Sciences, University of Messina School of Medicine, Messina, Italy.

Mailing Address:
Vincenzo Fodale, MD, Aggregate Professor of Anesthesiology and Intensive Care, Department of Neuroscience, Psychiatric and Anesthesiological Sciences, University of Messina School of Medicine, via S. Anna 4, 98125 Messina, Italy.

ABSTRACT

Objective: We addressed the prevalence of opioid dependence (OD) in spine surgery patients and its correlation with length of stay (LOS) as the most important determinant of hospital cost.

Methods: The study took place at Georgia Neurosurgical Institute and the Medical Center of Central Georgia between March 2006 and January 2007. A prospective convenience sample of 150 spine surgery patients (48 lumbar discectomy, 60 cervical decompression and fusion, and 42 lumbar decompression and fusion [LDF]) was assembled. Patients were interviewed before surgery using a questionnaire designed in accordance with the World Health Organization and DSM-IV-TR criteria for the diagnosis of OD. The prevalence of OD was calculated based on questionnaire results. Pain intensity was quantified during admission using a 0-to-10 pain scale. We used pain intensity multiplied by duration of pain in months (WR index) as a new parameter. Lengths of stay were collected following patients’ discharge from hospital. Pearson correlation and regression analysis were performed using SPSS software.

Results: Thirty (20.00 percent) patients were opioid dependent. The prevalence was highest among LDF patients (23.81 percent), females (22.78 percent), and, to a lesser degree, Caucasians (20.87 percent). There was no correlation between OD and age \((r = 0.08, p > 0.1) \) or between OD and LOS \((r = 0.09, p > 0.1) \). This study proved a very significant positive correlation between OD and pain intensity \((r = 0.24, p < 0.01) \) and between OD and the WR index \((r = 0.30, p < 0.01) \). On the other hand, there was a significant positive correlation between LOS and age \((r = 0.42, p < 0.01) \), between LOS and the number of previous spine surgeries \((r = 0.28, p < 0.01) \), and between LOS and duration of pain \((r = 0.18, p < 0.05) \). Regression analysis showed that age, ethnicity, and type of surgery were the main determinants of LOS.

Conclusions: Chronic pain and prolonged use of opioids raise the prevalence of OD in spine surgery patients to 20 percent. The lack of effect of OD on LOS after surgical intervention means that efforts to decrease LOS by trying to satisfy patients’ craving for opioids will not be fruitful. Older, African-American LDF patients with a lengthy history of pain and multiple spine surgeries in the past are the most likely to stay longer in hospital.

Key words: opioid, dependence, spine surgery, length of stay, WR index

INTRODUCTION

The first thing they told us in medical school is that no one has ever died from pain, but plenty of physicians have had their careers destroyed trying to help people who are in pain.

—Comment from an emergency room physician requesting anonymity (2001)

Chronic pain and addiction to prescription painkillers are two growing national problems. In 1999, it was estimated that over 86 million Americans suffered from ongoing chronic pain caused by back injuries, arthritis, and other noncancer conditions. Over 66 million individuals were partially or totally disabled due to back pain, and 8 million were permanently disabled. By 2003 the numbers had increased, with approximately 117 million American adults suffering from chronic pain conditions. The director of the National Institute on Drug Abuse, Nora Volkow, stated in 2005 that if opiates are given for pain, an estimated 5 to 15 percent of patients receiving them will become addicted. When opiates are prescribed for short-term use (one to two weeks), there is little likelihood of addiction, but there is an increased risk of addiction with long-term opiate use.
Fishbain et al.\(^4\) reviewed prevalence percentages for addiction in patients with chronic pain. They reported that different authors utilized different definitions and criteria. Overall, the prevalence of drug abuse/dependence/addiction for patients with chronic pain was in the range of 3.2 to 18.9 percent. Other studies have directly or indirectly explored this issue. Hoffmann et al.\(^4\) found an addiction rate of 23.4 percent, Chabal et al.\(^5\) found a rate of 34 percent, and Kouyanou et al.\(^6\) reported a rate of 12 percent. There has also been one report relating to chronic pain populations at a US Veterans’ Affairs (VA) facility and in a primary care setting. In this study, Reid et al.\(^7\) found that prescription opioid abusive behavior was recorded in 24 percent of the VA patients and 31 percent of the primary care patients. As “opioid abusive behavior” does not necessarily translate into addiction, there is some uncertainty as to how to interpret these results and their implications.

Patients with back pain are among those with high potential for prescription-painkiller abuse. The prevalence of opioid dependence (OD) in back pain patients admitted for spine surgery has not been studied before, and its association with length of stay (LOS) in the hospital has not been determined. Therefore, in this article we address two issues: 1) the prevalence of OD in spine surgery patients, and 2) the correlations between different opioid-, pain-, and LOS-related parameters. Our hypothesis was that patients classified as opioid dependent would stay in the hospital for longer periods than those not meeting OD criteria. The study protocol was approved by the Institutional Review Board of the Medical Center of Central Georgia.

METHODS

We prospectively studied 150 preoperative spine surgery patients at Georgia Neurosurgical Institute between March 2006 and January 2007. All eligible patients were using an opioid for pain relief (convenience sample). These participants were between 24 and 78 years of age; 52.67 percent were female and 76.67 percent were Caucasian, and all were diagnosed with either herniated nucleus pulposus in the cervical or lumbar segments or spinal stenosis.

The World Health Organization (WHO) and the fourth revision of the *Diagnostic and Statistical Manual of Mental Disorders* (DSM-IV-TR) both require three or more of the following six criteria for a diagnosis of dependence:

1. a strong desire or sense of compulsion to take the drug in question;

2. difficulties controlling drug-taking behavior in terms of its onset, termination, or levels of use;

3. a physiological withdrawal state when drug use is stopped or reduced, as evidenced by the characteristic withdrawal syndrome for the substance or use of the same (or a closely related) substance with the intention of relieving or avoiding withdrawal symptoms;

4. evidence of tolerance such that increased doses of the drug are required in order to achieve effects originally produced by lower doses;

5. progressive neglect of alternative pleasures or interests because of drug use, as well as increased amounts of time necessary to obtain or take the drug or to recover from its effects; and

6. persisting with drug use despite clear evidence of overtly harmful consequences, such as harm to the liver, depressive mood states, or impairment of cognitive functioning.\(^8,9\)

The Walid-Robinson Opioid-Dependence (WROD) Questionnaire was designed based on the above mentioned criteria:

1. Which of your drugs helps you most to ease the pain? Which do you desire to continue using?

2. Do you now experience lengthy periods of use or binge patterns of use?

3. Do you have tremors and use substances to relieve withdrawal symptoms?

4. Are you able to take more of the drug without easing the pain?

5. Do you neglect food, hygiene, or healthcare?

6. Do you continue to use the drug despite knowledge of problems caused or exacerbated by it?

The prevalence of OD in our convenience sample was calculated based on the results of this questionnaire. Pain intensity was quantified during admission using a 0-to-10 pain scale. We used pain intensity multiplied by duration of pain suffering in months (Walid-Robinson [WR] index) as a new parameter. Lengths of stay were collected following patients’ discharge from hospital (after being able to stand and walk in the absence of complications). Pearson correlation and regression analysis were performed using SPSS software.
Help Enhance the Recovery Plan for Your Opioid-Dependent Patients

As a counselor, you may often see patients with opioid dependence who come to you for help and are ready to take the next step toward recovery. Many of them may be taken off course by withdrawal symptoms or drug cravings, and ultimately relapse. Some patients feel like they have failed themselves, and you might feel challenged in your efforts to help.

While psychosocial counseling is a cornerstone to successful opioid-dependence treatment, these patients may be candidates for medical treatment as an adjunct to counseling. A treatment option is available to address the biological basis of this disease within the privacy of a physician’s office.

Evolving Evidence: Opioid Dependence Is a Biological Brain Disease

Studies document that continued drug use causes neurological and molecular changes in the brain. In fact, these alterations in brain structure and function persist long after drug use has ceased—perpetuating the cycle of drug-seeking behavior and withdrawal avoidance.

PET scans confirm the biological differences between the brain of a healthy volunteer and that of an opioid-dependent individual.3

Implementing an Integrated Treatment Program: Improving Patients’ Outcomes

Pharmacotherapy plays an important role in helping control the biological effects of dependency—specifically, withdrawal symptoms and cravings. These are often the driving forces that lead individuals to continued opioid use, despite ongoing counseling. Addressing these symptoms with pharmacotherapy may allow your patients to have a more focused approach, positive attitude, and greater receptivity to counseling.

In fact, studies have shown that treatment using a combined strategy improved outcomes for many patients, including:

- Increase in therapy retention
- Improvement in personal relationships and employment
- Decrease in illicit drug use

References:
2. Leshner AI. Addiction is a brain disease, and it matters. Science. 1997;278:45-47.
RESULTS

Out of 150 preoperative spine surgery patients (48 lumbar discectomy [LMD], 60 cervical decompression and fusion [CDF], and 42 lumbar decompression and fusion [LDF]) on opioids (hydrocodone, acetaminophen plus hydrocodone, acetaminophen plus oxycodone, tramadol, hydromorphone), 30 (20.00 percent) met the criteria for a diagnosis of OD.

Focusing on type of surgery (Figure 1), the percentage of OD was highest among LDF patients (23.81 percent), followed by CDF (21.67 percent) and LMD (14.58 percent). After categorizing the sample according to age (Figure 2), the graph seemed to indicate increased prevalence of OD with age. However, SPSS showed no correlation ($r = 0.08$, $p > 0.1$) between OD and age. Considering gender and ethnicity (Figure 3), rates were higher among females (22.78 percent, $n = 79$) than males (16.90 percent, $n = 71$) and, to a lesser degree, among Caucasians (20.87 percent, $n = 115$) than African Americans (17.14 percent, $n = 35$).

When taking LOS into consideration (Figure 4), we found no significant correlation with OD ($r = 0.09$, $p > 0.1$). Obviously, factors other than drug problems were determining LOS. The correlation coefficients between OD and LOS for each type of surgery were $r = 0.09$, $p > 0.1$ for LMD ($n = 48$); $r = 0.07$, $p > 0.1$ for CDF ($n = 60$); and $r = -0.08$, $p > 0.1$ for LDF ($n = 42$). The average hospital stays for OD patients compared to nondependent patients were as follows: 0.14 ($n = 7$) versus 0.07 ($n = 41$) for LMD, 2.08 ($n = 13$) versus 1.73 ($n = 47$) for CDF, and 4.00 ($n = 10$) versus 4.00 ($n = 32$) for LDF.

This study showed no correlation between OD and LOS ($r = 0.09$, $p > 0.1$) or between OD and age ($r = 0.08$, $p > 0.1$). However, it revealed a very significant correlation between OD and pain intensity ($r = 0.24$, $p < 0.01$) and between OD and the WR index ($r = 0.30$, $p < 0.01$) (Table 1). There were also significant positive correlations between LOS and age ($r = 0.42$, $p < 0.01$), LOS and the number of previous spine surgeries ($r = 0.28$, $p < 0.01$), and LOS and duration of pain ($r = 0.18$, $p < 0.05$) (Table 2).

Regression analysis showed that type of surgery ($p = 0.000$), age ($p = 0.016$), and ethnicity ($p = 0.032$) were the most significant variables affecting LOS (Figure 5). OD ($p = 0.911$) was the least significant factor among all studied variables.

DISCUSSION

Before the 1960s, it was fairly common to ascribe elements of criminality, character deficit, immorality, and weakness of will to drug addiction. Because these attributes were not objective or scientifically based and carried various negative social connotations, the WHO, in 1964, recommended that the term “drug addiction” be replaced with “drug dependence” in an effort to define this problem more precisely.10,11

In 1964, the WHO Expert Committee on Drug Dependence introduced “dependence” as “a cluster of physiological, behavioural and cognitive phenomena of variable intensity, in which the use of a psychoactive drug (or drugs) takes on a high priority. The necessary descriptive characteristics are preoccupation with a desire to obtain and take the drug and persistent drug-seeking behaviour. Determinants and problematic consequences of drug dependence may be biological, psychological or social, and usually interact.”10 The core concept of the WHO definition of drug dependence requires the presence of a strong desire or sense of compulsion to take the drug, and the WHO and DSM-IV-TR clinical guidelines for a definite diagnosis of dependence require that three or more of the six previously described characteristic features be experienced or exhibited.

Our questionnaire revealed that one-fifth (20.00 percent) of spine surgery patients were opioid dependent. This is likely because opioids are commonly prescribed
to patients with disk hernia and spinal stenosis. The high percentage of OD in LDF patients (24.39 percent) may be due to their long history of chronic pain accompanied by prolonged use of opioids. That the percentage of OD was higher among female patients (22.37 percent) than males agrees with the observation that women are more likely to be prescribed an abusable prescription drug.12 Hospital LOS is dependent on many medical, social, psychological, and institutional factors. In this study, age, number of previous spine surgeries, and duration of pain suffering were correlated with LOS but not OD. The older the patient, the more health problems he or she has, and the more time he or she will need to recover. In addition, elderly patients have more comorbidities, as well as altered drug pharmacokinetics and pharmacodynamics. They are also more likely to be prescribed long-term and multiple medications, which can interact and increase side effects.12 Regression analysis proved that age, ethnicity, and type of surgery were the main determinants of LOS. Combining results, we concluded that older, African-American LDF patients with a long duration of pain and a history of multiple spine surgeries were the most likely to stay longer in hospital. The role of ethnicity is unclear and requires further investigation. The lack of effect of OD on LOS after surgical intervention was surprising and proved our hypothesis wrong, as we originally anticipated a higher LOS for patients with OD.

Fear of addiction continues to be a barrier to adequate pain control. Patients, families, the public, and healthcare professionals have numerous misconceptions regarding addiction and the use of opioids to control pain. The media continually highlights negative uses of opioids, and this only enhances misconceptions concerning addiction. Unfortunately, relief of back pain is rarely featured in the media as an appropriate and beneficial use for opioids. In 1999, the American Pain Society surveyed 805 people with chronic pain regarding the adequacy of treatment received from their physicians. Only 26 percent of those respondents who had “very severe” pain reported taking opioids at the time of the survey.13 In 2005, Mahowald et al.14 studied opioid use in an orthopedic spine clinic and challenged the concept that opioid treatment is inappropriate for chronic nonmalignant pain. They provided clinical evidence to support and protect

<table>
<thead>
<tr>
<th>Table 1. OD correlations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
</tr>
<tr>
<td>OD</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

* Correlation is significant at the 0.05 level; ** Correlation is significant at the 0.01 level.
Our study showed that spine surgery patients continue to suffer from severe pain despite opioid use. Chronic pain and prolonged use of opioids raise the risk of OD, as was proven by the very significant correlation between OD and the WR index (r = 0.30, p < 0.01). Further probing of the WR index is important, as it may prove to be a marker of OD in spine surgery patients. The average value of the WR index for OD patients was 660.

CONCLUSIONS

The significant prevalence of OD among spine surgery patients merits attention. Chronic pain and prolonged use of opioids raise the prevalence of OD in spine surgery patients to 20 percent. The lack of effect of OD on LOS after surgical intervention means that efforts to decrease LOS by trying to satisfy patients’ craving for opioids will not be fruitful. Older, African-American LDF patients with a long history of pain and multiple spine surgeries in the past are the most likely to stay longer in hospital.

Drug abuse and undertreated pain are both serious public health issues, but finding solutions for one need not undermine the other. Knowledgeable pain practitioners need to educate patients, families, the public, and other healthcare professionals about the differences between addiction, dependence, and tolerance, and the benefit of safely using opioids to relieve back pain.

Mohammad Sami Walid, MD, PhD, Research Fellow, Medical Center of Central Georgia, Macon, Georgia.
Leon Hyer, PhD, Psychologist, Georgia Neurosurgical Institute, PC, Macon, Georgia.
Mohammed Ajjan, MD, Internist, Georgia Neurosurgical Institute, PC, Macon, Georgia.
Aaron C. M. Barth, Decision-Making Analyst, Medical Center of Central Georgia, Macon, Georgia.
Joe Sam Robinson, Jr., MD, Professor and Chairman, Georgia Neurosurgical Institute, PC, Macon, Georgia.

REFERENCES

Oral naltrexone to enhance analgesia in patients receiving continuous intrathecal morphine for chronic pain: A randomized, double-blind, prospective pilot study

Scott Hamann, PhD, MD
Paul Sloan, MD

ABSTRACT

Background: Years’ worth of observations suggest that morphine has both inhibitory and excitatory actions, and that selective blockade of excitatory effects by low doses of opioid antagonists (e.g., naltrexone) may paradoxically enhance morphine analgesia. The purpose of this pilot study was to evaluate and compare the analgesic efficacy and safety of two different low doses of oral naltrexone given in addition to chronic intrathecal morphine infusions in patients with chronic nonmalignant pain (CNMP).

Methods: After institutional review board approval, 15 patients with CNMP receiving continuous intrathecal morphine were admitted into a prospective, randomized, double-blind, placebo-controlled, seven-day pilot study. Patients were randomized into three treatment groups based on oral naltrexone dose: 100 μg (Group A, n = 3), 10 μg (Group B, n = 7), or placebo (Group C, n = 5). All patients continued with their constant intrathecal morphine infusion, and in addition they received one capsule of study medication every 12 hours for seven days. Other analgesics or coanalgesics were kept at a constant dose level throughout the study. Patients rated pain scores (visual analogue score [VAS]; 0 = no pain, 10 = worst pain imaginable) and side effects three times daily throughout the study period. Efficacy measures included pain intensity difference (PID) scores, constructed so that positive scores indicate a reduction in pain intensity and negative scores indicate a worsening of pain.

Results: Fifteen patients (six male, nine female) with a mean (SD) age of 55 (10) years and weight of 81 (21) kg completed the study. The mean (SD) baseline VAS pain intensity rating was similar in all three groups (6.8 (1.5)). Baseline pain VAS score minus the lowest daily pain VAS score yielded the peak PID score. The peak PID score from Day 1 was statistically (p < 0.05) highest (median PID score: 5.9) in Group A compared with Group C. There was a trend in PID scores across Days 2 through 7, with median PID scores higher (i.e., greater pain relief; p = 0.07) in Group A. In the daily global pain assessments, the pain scores across Days 2 through 7 approached significance (least pain) in Group A compared to Group C (p = 0.07) or B (p = 0.08). Side effects were common (93 percent of patients), minor (headache, nausea, sedation, dry mouth), and similar across treatment groups. No serious adverse events were observed, and no evidence of opioid withdrawal was seen.

Conclusions: 1) Patients with chronic pain who received oral naltrexone 100 μg BID in addition to their chronic intrathecal morphine infusions demonstrated the greatest improvement (p = 0.07) in their daily pain scores. Because of the small sample size, the results did not reach traditional levels of significance. 2) Side effects were common, minor, and similar across treatment groups. 3) No serious adverse events were recorded. 4) No evidence of opioid antagonist toxicity or opioid withdrawal was observed.

Key words: chronic pain, opioid agonists, opioid antagonists, intrathecal analgesics, analgesia

INTRODUCTION

Morphine and other opioids have been prescribed for many years for the treatment of cancer pain and have been found to be effective for the relief of moderate to severe pain.¹ In the last decade, chronic oral or transdermal opioids have gained acceptance as treatments for chronic nonmalignant pain (CNMP).² For CNMP patients who do not achieve adequate analgesia with chronic oral opioids or who experience intolerable side effects from opioids, other forms of treatment, such as spinal analgesics, are often used.³

Opioids interact with stereospecific, saturable receptors in the brain, spinal cord, and other tissues, with a principal therapeutic effect of analgesia.⁴ Morphine binding to inhibitory opioid receptors on nerve cells results in inhibition of the transmission of pain signals into the
brain. It has been observed, however, that while the dominant effect of opioids in their usual clinical doses is to inhibit opioid receptors, opioid agonists simultaneously activate excitatory opioid receptors on sensory nerve cells. This paradoxical excitatory action can weaken opioid-induced analgesia and contribute to dependence and tolerance-related opioid-therapy failures. Therefore, medications able to selectively block this excitatory effect on opioid receptors could theoretically enhance opioid analgesia.

The antiexcitatory actions of low-dose opioid antagonists and their potential as possible adjuncts for the enhancement of opioid agonist analgesia have been evaluated through basic and clinical research. Selective antagonism of excitatory opioid receptor function has been shown to enhance the inhibitory potency of opioid agonists in dorsal root ganglion cultures. In rodent nociceptive paradigms, opioid antagonists not only exhibit biphasic dose-response curves but also markedly enhance the analgesic potency of morphine when co-administered in remarkably low doses.

Several clinical studies and case reports published over the years provide further evidence of this enhancement of opioid analgesia via concurrent use of low doses of opioid antagonists. Levine examined the analgesic actions of naloxone in patients with postoperative dental pain in a controlled, double-blind trial and found that naloxone 400 and 1,000 µg potentiated the analgesic effect of oral pentazocine. A more recent case report demonstrated the opioid-analgesic-enhancing effect of naltrexone when added to chronic methadone therapy in a patient with chronic and refractory painful diabetic neuropathy. For this patient, the addition of naltrexone in the ultra-low dose of 1 µg twice daily not only improved pain relief but also allowed for a modest reduction in methadone dose.

Naltrexone is a pure opioid antagonist that blocks the subjective effects of intravenously administered opioids. It has few, if any, intrinsic actions aside from its opioid-blocking properties. Based on the hypothesis that selective antagonism of opioid excitatory actions may enhance the analgesic potency of opioid agonists, we designed a study to evaluate the safety and efficacy of combined intrathecal morphine and low-dose naltrexone in the treatment of CNMP. Intrathecal opioid therapy delivers low doses of opioids close to the site of action and is often effective in treating CNMP syndromes. However, complete pain relief is not always achieved in all patients, and additional therapies are needed to control chronic pain in the refractory population. Thus, the addition of a low-dose opioid antagonist (i.e., naltrexone) was proposed to enhance analgesia in patients experiencing incomplete pain relief while receiving chronic intrathecal opioids for CNMP. The purpose of this pilot study was to evaluate and compare the analgesic efficacy and safety of two different low doses of oral naltrexone when added to chronic intrathecal morphine therapy in patients with CNMP.

METHODS

Study design

This was a prospective, randomized, double-blind, single-center, placebo-controlled pilot study of the effects of low-dose oral naltrexone on pain relief produced by chronic intrathecal morphine administration. Oral naltrexone was chosen over intrathecal antagonists because of concerns about the unapproved nature of intrathecal naloxone use and the potential for neurotoxicity.

Written informed consent was obtained from all patients. The protocol and informed consent form were reviewed and approved by the Institutional Review Board at the University of Kentucky. The study was conducted in accordance with the provisions of the Declaration of Helsinki and its amendments, and with the International Conference on Harmonization Good Clinical Practice as adopted by the US Food and Drug Administration.

Patients

Adult patients with a history of incompletely relieved CNMP who were using indwelling intrathecal morphine delivery systems were eligible for enrollment. Eligible patients were those with chronic refractory pain and a history of inadequate pain relief following prior use of at least two different opioid analgesic medications. Patients had a baseline visual analogue pain score (VAS) of at least 5 (0 = no pain, 10 = unbearable pain). Premenopausal women testing negative on a serum pregnancy test within seven days of enrollment and either practicing abstinence or using a medically accepted contraception method were eligible for enrollment. Patients had to be willing and able to complete the necessary patient evaluations. Exclusion criteria included any condition that might interfere with the absorption of study medications (e.g., intractable nausea and vomiting, inability to take oral medication, certain gastrointestinal disorders); a history of clinically significant intolerance or hypersensitivity to study medications; a history of (or anticipated) procedures that might confound quantification of analgesia; chronic respiratory insufficiency; severe hepatic or renal impairment; unstable seizure disorder; and any other physical, mental, or psychological condition that might interfere with the study or the interpretation of its results. Patients were not eligible for the study if adjuvant analgesics (e.g., anticonvulsants, antidepressants, NSAIDs) or oral opioids had been started or discontinued within four weeks of study entry.
Study procedures

Fifteen patients were recruited and randomly assigned to one of three naltrexone treatment groups: naltrexone 100 μg (Group A, n = 3), naltrexone 10 μg (Group B, n = 7), or placebo (Group C, n = 5). Oral study medication was provided in the form of identical hard, opaque gelatin capsules. The inactive ingredients were microcrystalline cellulose and magnesium stearate. Both patients and researchers were blinded to the dose of study medication. All bottles, used or unused, were saved for final disposition.

All patients continued their constant intrathecal morphine infusion at the same dose throughout the seven-day study period. Patients receiving adjuvant analgesics continued their medications without change throughout the study period. Prior to administration of oral study drug, baseline assessments were performed, including vital signs, VAS (0 = no pain, 10 = unbearable pain), and evaluation of side effects (sedation, dry mouth, headache, itching, difficulty urinating, constipation, nausea, and vomiting) on a 4-point Likert scale (0 = none, 1 = mild, 2 = moderate, 3 = severe).

Patients recorded VAS ratings and assessed side effects three times daily throughout the seven-day study period. In addition, patients made a global 24-hour assessment of pain using a VAS scale (0 = no pain, 10 = worst possible pain) once daily. Pain evaluations on Day 1 were made prior to taking study drug, 30 minutes after taking study drug, and hourly post-dose over eight hours.

Patients took study medication every 12 hours throughout the seven-day trial. Acetaminophen was allowed as rescue medication.

Safety and efficacy

Patients recorded their assessments of analgesia, nausea, and sedation, as well as the use of regularly scheduled medications and/or rescue medication. Compliance was determined by review of patient diaries and counts of returned medication. Vital signs, including respiratory rate, heart rate, blood pressure, blood oxygen saturation, and oral temperature, were taken prior to administration of study medication, hourly on the first study day, and once on Day 8 during the patient’s exit evaluation. Adverse events were coded using standard methods and recorded in terms of severity and relationship to study drug.

Drug efficacy was estimated via evaluation of pain intensity difference (PID) score, which is the baseline VAS pain intensity rating minus the current pain intensity score. A positive PID score indicates a reduction in pain intensity, and a negative score indicates worsening of pain intensity.17-19

Statistical analysis

Results from all enrolled patients were included in the analysis of efficacy data. Statistical evaluation of overall treatment effects was assessed using the exact Kruskal-Wallis procedure. Pairwise comparisons were made using the exact two-sample Wilcoxon procedure. Treatment differences were considered significant at p < 0.05. Pairwise testing was considered only if the overall treatment differences were found to be statistically significant (p < 0.05) or demonstrated a trend (p < 0.05 to p < 0.10).

RESULTS

This investigation was considered a Phase I pilot study, intended to capture treatment information to be used in the design of future trials. While all 15 patients completed the study, the resultant uneven numbers of patients between treatment groups made it difficult to generate highly significant statistical results. Nonetheless, several interesting trends were observed in the study data.

Fifteen patients (nine females and six males) completed the protocol (Table 1) and complied with all drug-dosing schedules. The mean (SD) age was 55 (10) years, with a mean (SD) weight of 81 (21) kg. All patients had failed to achieve sustained pain relief on previous oral opioid analgesics, all patients had been previously treated with injective steroid therapy such as epidural or facet injections, and six patients had a history of previous back surgery for pain (one patient in Group A, four patients in Group B, and one patient in Group C). The pain diagnosis, daily intrathecal morphine dose, and concomitant analgesic use for each patient are listed in Table 2.

Mean (SD) baseline oxygen saturations (95.3 percent [3.2]), heart rates (75 bpm [17]), respiratory rate (19 bpm [3.4]), systolic blood pressure (127 mmHg [15.7]), diastolic blood pressure (78 mmHg [12]), and oral temperatures (98.4°F [0.6]) were all unremarkable and exhibited no statistically significant or clinically important changes during the study period.

The mean (SD) baseline VAS pain intensity rating of 6.8 (1.5) was similar in all three groups. Peak PID score was calculated by subtracting the lowest daily pain VAS score from the baseline pain VAS score. Differences in PID scores between all the treatment groups approached statistical significance (p < 0.07). The peak PID score from Day 1 was statistically (p < 0.05) highest (median PID score: 5.9) in Group A compared with Groups C and B (Figure 1). No difference in reported PID scores was found across time between Groups B and C. The PID scores through eight hours post-dose approached statistical significance (p < 0.08), as the median PID scores tended to be highest (i.e., greatest reduction in pain) in Group A and lowest (i.e., least reduction in pain) in Group B.

After Day 1, pain evaluations were made three times daily through Day 7. PID scores were then calculated for
each time point in terms of change from Day 1 baseline evaluation (Figure 2). There was a statistically significant difference found among the treatment groups on the afternoon of Day 2 (p < 0.05), when Group A had significantly higher PID scores than Groups B and C (p < 0.05). A statistically significant difference was also found among the treatment groups on the evening of Day 3, when Group A had higher scores than either Group B or C (p < 0.05). The PID scores from Day 2 through Day 7 approached statistical significance (p < 0.07), as the median PID scores were higher in Group A than in Group B or C at all pain measurements for Days 2 through 7.

There were no deaths or serious adverse events reported during the one-week study. Side effects related to the gastrointestinal and/or nervous system were most commonly reported, with 14 of 15 patients reporting one or more events in those categories. The most commonly reported adverse events were headache (11 patients), dry mouth (11 patients), sedation (10 patients), and nausea (nine patients). Other side effects included constipation (six patients), pruritus (one patient), and vomiting (two patients). Interestingly, the highest number of reported adverse events per patient (five) occurred in the placebo group. Twenty-five events were reported by the five placebo patients, while 26 events were reported by the seven patients in Group B and seven events were reported by the three patients in Group A.

DISCUSSION

Oral opioids have been recommended recently for the treatment of CNMP such as osteoarthritis and chronic low back pain. This analgesic treatment is often successful, but some patients experience intolerable side effects or inadequate pain relief. For this subset of CNMP patients, spinal analgesics administered via implantable intrathecal pumps are frequently tried. While many patients gain

<table>
<thead>
<tr>
<th>Table 1. Patient demographics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristic</td>
</tr>
<tr>
<td>Number of patients</td>
</tr>
<tr>
<td>Age</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>Median</td>
</tr>
<tr>
<td>Range</td>
</tr>
<tr>
<td>Sex</td>
</tr>
<tr>
<td>Males</td>
</tr>
<tr>
<td>Females</td>
</tr>
<tr>
<td>Height (in)</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>Median</td>
</tr>
<tr>
<td>Range</td>
</tr>
<tr>
<td>Weight (kg)</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>Median</td>
</tr>
<tr>
<td>Range</td>
</tr>
</tbody>
</table>
excellent pain relief from intrathecal analgesics, some do not achieve adequate pain relief, and the occasional patient experiences serious adverse events such as paraplegia and respiratory depression.22,23 Clearly, additional pain therapies are needed to control chronic pain among patients refractory to oral analgesics and invasive pain treatments. Ultra-low-dose opioid antagonists have occasionally been added to opioid therapy to paradoxically enhance opioid analgesia.6 With this pilot study, we have reported the first use of oral naltrexone to enhance the analgesia of patients with chronic pain receiving intrathecal morphine.

In this study, patients with chronic pain who received oral naltrexone 100 μg twice daily as an adjunct to chronic intrathecal morphine infusions tended to experience the greatest improvement in their daily pain scores. On the first day of treatment, the highest peak PID scores (greatest pain relief) were seen in the group receiving naltrexone 100 μg BID. Throughout the first day of treatment, there was a trend in the PID scores indicating that the naltrexone 100 μg group tended to have the greatest reduction in pain, with the placebo and naltrexone 10 μg groups experiencing less pain relief. Although these data did not achieve statistical significance, we believe that this trend, even among this small number of patients, is important. Clearly, a larger prospective study needs to be completed to test more fully the hypothesis that oral naltrexone can enhance opioid analgesia among patients with CNMP.

This pilot study is limited chiefly by its small sample size. Because of the small patient numbers, the results did not always reach traditional levels of significance and frequently only suggested a trend. A larger, double-blind, prospective clinical trial is necessary to determine

<table>
<thead>
<tr>
<th>Group</th>
<th>Patient</th>
<th>Pain diagnosis</th>
<th>Intrathecal morphine daily dose (mg/d)</th>
<th>Concomitant analgesics</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>DJD lumbar spine</td>
<td>8.0</td>
<td>imipramine</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Postlaminectomy syndrome</td>
<td>2.7</td>
<td>oxycodone</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Chronic low back pain; bilateral hip pain</td>
<td>6.5</td>
<td>hydrocodone</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Postlaminectomy syndrome</td>
<td>2.3</td>
<td>methadone</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Postlaminectomy syndrome</td>
<td>7.0</td>
<td>gabapentin</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Postlaminectomy syndrome</td>
<td>4.5</td>
<td>gabapentin</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>DJD cervical spine</td>
<td>12.7</td>
<td>oxycodone</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>DJD cervical spine</td>
<td>1.8</td>
<td>methadone</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>DDD lumbar spine</td>
<td>4.4</td>
<td>amitriptyline</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Postlaminectomy syndrome</td>
<td>2.5</td>
<td>doxepin</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>DJD lumbar spine</td>
<td>23.5</td>
<td>methadone</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Postlaminectomy syndrome</td>
<td>3.2</td>
<td>oxycodone</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Flank pain (renal stones)</td>
<td>7.5</td>
<td>acetaminophen</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Lumbar spondylosis</td>
<td>5.5</td>
<td>NSAID</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>DJD lumbar spine</td>
<td>9.0</td>
<td>NSAID</td>
</tr>
</tbody>
</table>

DJD = degenerative joint disease; DDD = degenerative disc disease; NSAID = nonsteroidal anti-inflammatory drug.

Table 2. Patient pain diagnosis and analgesic use
whether the efficacy of naltrexone in enhancing intrathecal opioid analgesia can be verified.

The pharmacologic antagonism of excitatory (hyperalgesic), but not inhibitory (analgesic), central nociceptive systems offers a new therapeutic option for anesthesiology, psychiatry, pain management, and palliative medicine. The paradoxical analgesic actions of low doses of opioid antagonists have been demonstrated in both animals and humans.6,7,11-14 This paradoxical ability of low-dose opioid antagonists to enhance opioid analgesia is not new; in the early 1950s, researchers at Massachusetts General Hospital were already attempting to combine an opioid analgesic with an opioid antagonist in order to enhance morphine analgesia without side effects.6 Over the next 50 years, various case reports and clinical trials demonstrated that low doses of opioid antagonists enhance opioid analgesia, while large doses of opioid antagonists provide the expected antagonism of opioid effects. Our results indicate that naltrexone’s enhancement of intrathecal morphine analgesia may be dose dependent, since only the 100 mcg treatment group experienced improved pain relief. Since this pilot study was the first of its kind, the most useful dose of naltrexone was unknown, and our study dose was based on estimations from available animal and human data. Future clinical trials should better define the therapeutic range for naltrexone’s analgesic enhancement actions by comparing effects of slightly higher and slightly lower doses of naltrexone to the 200 μg/d shown to be most effective in this pilot trial.

More recent case reports and clinical trials demonstrate the possible usefulness of this new analgesic treatment (naltrexone) in patients with refractory chronic pain.6 One such case report involves a diabetic patient with painful peripheral neuropathy refractory to methadone 240 mg/d.13 The patient rated his pain as 9/10 on the VAS scale, in spite of gabapentin adjuvant analgesic therapy, and methylphenidate was necessary in order to combat opioid-related sedation. The patient was given naltrexone 2 μg/d and reported a significant drop in pain score on Day 1, to 3/10. His pain remained controlled with this addition of low-dose naltrexone, and his methadone dose was reduced to 200 mg/d. Our patients responded to a higher—though still classified as low—dose of naltrexone (200 μg/d). This difference may be related to the pain etiology (none of our patients had painful diabetic neuropathy) and to the different route of opioid administration, with all patients in our trial receiving intrathecal opioid analgesics. Since this is the first report of naltrexone enhancing the analgesic effect of intrathecal opioids, the most useful oral dose of naltrexone for enhancing analgesia in CNMP patients remains speculative.

Two clinical trials have been completed using a commercial preparation of oxycodone combined with oral low-dose naltrexone. The first prospective, double-blind, placebo-controlled clinical trial compared the analgesic effect of oxycodone alone versus oxycodone with naltrexone 1 μg among patients with osteoarthritis and chronic pain.24 Oxycodone combined with low-dose naltrexone gave better pain relief compared with placebo or oxycodone alone over the course of the four-week clinical trial. Another recent clinical trial compared an oxycodone-naltrexone oral preparation with oxycodone alone in patients with chronic nonmalignant low back pain.25 Patients were allowed to titrate their own opioid doses to achieve adequate pain relief. Both oxycodone-naltrexone and oxycodone alone provided similar analgesia; however, the daily dose of oxycodone was lower in the oxycodone-naltrexone group, suggesting that the naltrexone enhanced opioid analgesia.20 Furthermore, there were no significant side effects or adverse reactions in the low-dose naltrexone group. Correlation of our pilot study results with these larger clinical trials is difficult, since we added low-dose oral naltrexone to intrathecal morphine analgesia.
No deaths or serious adverse events were reported during this pilot study. Side effects were common but minor, with the highest rate of side effects occurring in the placebo group. These are important observations, as the addition of an opioid antagonist to chronic opioid analgesic therapy is potentially harmful. There is always a possibility of precipitating opioid withdrawal, even when using low doses of naltrexone. Also, the opioid-enhancing effect of naltrexone could have precipitated opioid side effects such as sedation or respiratory depression. None of these serious side effects occurred during this clinical trial, however, and no evidence of opioid antagonist toxicity or opioid withdrawal was observed.

In summary, patients with CNMP who received oral naltrexone 100 mcg twice daily in conjunction with continuous intrathecal morphine infusions tended to demonstrate the greatest improvement in daily pain scores as compared to patients receiving placebo or naltrexone 10 mcg twice daily. We have presented the first pilot study in which low-dose oral naltrexone appears to enhance chronic intrathecal opioid analgesia among patients with chronic pain. Side effects were common, minor, and similar across treatment groups, with no serious adverse events (including opioid withdrawal) observed. While this pilot study involved a small number of patients, it employed rigorous methodology utilizing a prospective, double-blind, placebo-controlled trial design. Future trials need to explore the dose-response character of naltrexone’s analgesia-enhancing effects and expand clinical application to patients receiving chronic oral opioids.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the contributions made to this research study by Dr. W. Witt and Dr. E. Wala. The project was supported by Pain Therapeutics, Inc.

REFERENCES

ABSTRACT

Study objective: To investigate the effect of once-a-day extended release of morphine sulfate AVINZA® (A-MQD) on polysomnographic measures of sleep in a population of chronic osteoarthritic pain patients with sleep difficulties.

Design: Single-center, single-blind, placebo-lead-in, 30 mg or 60 mg. Patients' sleep and neurocognition were objectively measured at a sleep laboratory, and patients self-rated their pain, sleep, and other functions.

Participants: Thirty-four participants (26 to 75 years old) complaining of sleep difficulties and chronic, stable pain secondary to hip or knee osteoarthritis.

Interventions: Participants had a screening visit on current pain medication and then, following a single-blind placebo run-in period, received 30 mg/d of A-MQD for six days. At day 6, doses for participants with incomplete pain relief on the Brief-Pain-Inventory (BPI) pain scale were increased to 60 mg/d. Treatment continued for another eight days at the new dose level (14 days for a subgroup at 60 mg/d). Sleep was objectively measured by all-night polysomnography (PSG) at screening while on the participants’ current pain therapy, at baseline following a placebo run-in and at the end of treatment while on A-MQD.

Outcome measures: PSG parameters evaluated included Total-Sleep-Time (TST), Wake-timeafter-Sleep-Onset (WASO), Sleep-Efficiency (SE), Latency-to-Persistent Sleep (LPS), Latency-to-REM-sleep, the Number-of-Awakenings (NAW), the time spent in each stage of sleep, and REM-sleep-latency. Subjective evaluations included participants’ estimations of sleep time and sleep quality, the Epworth-Sleepiness-Scale (ESS), the BPI, and participant acceptance of and relief due to current therapy. Assessments of neurocognitive function were also made.

Results: Sleep initiation and maintenance tended to improve with A-MQD as demonstrated by the increases in TST and SE and decreases in WASO and NAW as compared with placebo-baseline values. Sleep architecture was preserved by the study drug and some increases in stage 2 and 3/4 sleep were seen compared with placebo baseline. Subjective ratings of sleep quality and sleep time were significantly improved with treatment, as were BPI scores and ratings of medication acceptance and pain relief. A-MQD was generally well tolerated.

Conclusions: A-MQD was an effective treatment for pain, and this study treatment was associated with improvement of both objective and subjective sleep parameters in participants with chronic osteoarthritic pain.

Key words: sleep, sleep quality, chronic pain, polysomnography, AVINZA® capsules

INTRODUCTION

Chronic pain is highly correlated with sleep disturbance. The incidence of disturbed sleep in participants with arthritis is estimated at nearly 60 percent. Importantly, baseline pain levels may even be predictive of sleep difficulties up to two years in the future. Furthermore, the relationship between disturbed sleep and pain appears to be bidirectional: pain worsens sleep difficulties and poor sleep heightens the perception of pain. Increasing pain levels may be correlated with an increasing risk for insomnia, and recurrent poor sleep may be linked to muscular pain, tenderness, and fatigue.
Opioids are a commonly used pharmacological tool for the management of chronic to moderate to severe pain. Yet, there have been relatively few studies using objective sleep measurements to evaluate the effects of these medications on any participants, much less chronic pain participants. A publication of a limited study suggests that acute nighttime (presleep time) administration of opioids may suppress rapid eye movement (REM) sleep and slow wave sleep and may unexpectedly increase wakefulness. On the basis of this limited experience related to acute administration, it might be speculated that in chronic pain participants opioid medications given to alleviate pain could in fact be disruptive to sleep and could contribute to the participant’s sleep disturbance, rather than ameliorating it. Studies by Caldwell et al., Rauck et al., and Panjabi et al. are in contrast to this, where osteoarthritis participants stated, in self-administered questionnaires, that pain relief with opiates improved the quality of their sleep.

The use of sustained release opioids (SROs) may be responsible for the improvements in sleep as found by Caldwell, Rauck, and Punjabi. The pharmacokinetics and analgesic properties of a given SRO are highly dependent on the release profile of the drug delivery system. Therefore, two different modified-release formulations of the same opioid may yield significantly different profiles, even when administered in a similar manner.

Release of morphine sulfate (A-MQD) is a morphine-based SRO with a novel modified-release formulation specifically designed for once-daily dosing. The present exploratory study was designed to determine whether alleviation of chronic pain in osteoarthritic participants via A-MQD would produce concurrent improvements in polysomnographic (PSG) sleep measures in addition to confirming prior reports of subjective sleep improvement. Correlation of PSG findings with measures of neurocognition as well as quality of life measures was also assessed.

METHODS

Study design

This single-center, placebo-lead-in, single-treatment, single-blind study was conducted at a US site. Two doses (30 mg, titrated to 60 mg as needed for a subset of the population) of A-MQD were evaluated in participants with documented osteoarthritis complaining of sleep disturbances secondary to their osteoarthritic pain. The protocol for this study was approved by an institutional review board, and the study was conducted in accordance with the Declaration of Helsinki and the Good Clinical Practice guidelines.

Participant selection involved three screening steps (Figure 1). First, potential participants underwent a clinical assessment visit. Second, participants returned for a polysomnographic screening visit (screening) while continuing the participants’ then current pain therapy. Third, participants who continued to be eligible were then withdrawn from their current pain and sleep medication during a five-day single-blind placebo-washout period that concluded with two nights of PSG evaluation (baseline). Subjective and neurocognitive evaluations were performed prior to discharge on the second morning (baseline for these evaluations). At this point, to continue to be eligible, participants had to have a score of ≥ 4 on the Brief-Pain-Inventory (BPI).

Participants who passed these three screening evaluations were formally entered into the study and were then
provided with 14 days of active treatment (30 mg/d A-MQD). Participants returned to the clinic on the sixth day of active treatment to repeat the series of subjective and neurocognitive tests performed at placebo baseline. At this visit, the dose of A-MQD was increased to 60 mg/d for participants reporting inadequately responsive pain. Participants returned to the clinic on the thirteenth- and fourteenth-day of treatment for a final two nights of PSG evaluation (day 13/14). Again, the subjective and neurocognitive batteries were repeated and final safety evaluations were performed prior to the final discharge on day 15.

As this was a pilot study, part way through the study, an interim analysis was conducted to examine the internal consistency of the data. This analysis suggested (see discussion section) that the two treatment arms (30 mg/d for 14 days vs 30 mg/d for six days followed by eight days at 60 mg/d) did not represent comparable exposure to constant doses of study drug. At this point, participants whose dosage had been increased to 60 mg/d were provided with treatment at this dose level for a further full 14 days, thus spending a total of 20 days on study treatment. Participants in this last group did not repeat the day 6 assessments after six days at the new dose level and engaged in the final PSG evaluations on day 19 and 20 (equivalent to day 13/14 for the other groups) and the final subjective assessments on day 21 (equivalent to day 15 for the other groups).

Regardless of treatment arm, concomitant medication was restricted. Both prescription and OTC pain and sleep medications were prohibited. In addition, the use of any form of steroids and viscosupplementation in osteoarthritic joints was not allowed. Rescue medications for either pain or sleep were not allowed.

Subject recruitment and selection

Male and female participants with osteoarthritis at a hip and/or knee joint, aged 18 to 80, in relatively good health were recruited for this study through local physicians and newspaper advertisements. Participants were eligible if they reported sleep disturbances secondary to their osteoarthritic pain and had been taking NSAIDs, acetaminophen, and/or a prn analgesic containing an opioid (maximum of 30 mg/d in morphine equivalents) for at least three months. Participants were further required to 1) not have a diagnosis of any chronic pain syndrome that would interfere with the assessment of osteoarthritis symptoms, 2) not have prior replacement surgery or other clinically significant disease at the affected joint(s), 3) not have a history of substance abuse or dependence, and 4) not receive any steroids within 30 days prior to baseline assessments, intra-articular steroids in within 60 days prior to study baseline, or intra-articular viscosupplementation at the affected joint(s) within six months of the start of the study.

After signing an informed consent statement, prospective study participants underwent a screening process that included a physical examination, clinical laboratory tests, and a 12-lead ECG. Qualified participants were invited to undergo a PSG screening night while continuing their current pain therapy. Participants who met the screening criteria for other sleep disorders (i.e., sleep apnea, periodic limb movement disorder) during the PSG screening night were no longer eligible for participation.

Next, eligible participants underwent a five-day placebo washout from all pain and sleep medications. At this point (placebo baseline), participants were finally invited to enter into a single-blind treatment if they had an average pain rating of 2-4 on the BPI scale.

Study procedures

Study drug. A-MQD (30 and 60 mg/d) was evaluated in this study. Medication (30 mg/d) was dispensed to participants after a single-blind placebo-baseline PSG night followed by next-morning neurocognitive, subjective pain, and sleep assessments. Participants were educated on the possible side effects of the study medication and cautioned about drowsiness while driving. They were then instructed to swallow one capsule of study medication in the morning each day for the next 14 days. Participants complaining of inadequate pain relief were titrated to 60 mg/d at the day 6 visit.

Polysomnography. PSG recordings were performed by experienced technicians and were scored according to the methodology of Rechtschaffen and Kales by a single registered polysomnographic technologist. Scoring was later confirmed by a blinded external, accredited polysomnographer. Recordings were taken in the sleep laboratory at screening (day 0), baseline (day -2, -1), and during treatment (day 13, 14) for a period of 480 minutes with lights out beginning at the participant’s habitual bedtime. PSG values are the mean of each two-night period.

Subjective assessments. Participants completed several subjective assessments of their sleep and pain. These evaluations were completed at screening (day -5), baseline (day 0), and during treatment (day 6, 15) and included the Epworth Sleepiness Scale (ESS), a sleep quality questionnaire, the Brief Pain Inventory (BPI), and ratings of the acceptability of and relief provided by their current therapy. The ESS is an eight-question instrument that assesses the participant’s subjective sense of the likelihood of falling asleep in various real-life situations. Each question is rated on a scale of 0 (“would never doze”) to 3 (“high chance of dozing”). The sleep quality questionnaire asked participants to rate their quality of sleep on a VAS scale of 0 to 100 and to estimate the average number of hours of sleep they were getting per night. The BPI is a...
series of questions in which participants rate their pain on a scale of 0 (“no pain”) to 10 (“pain as bad as you can imagine”). Participants used a five-point scale to rate their acceptance of their current therapy. This scale was anchored at 0, “none” and 4, “excellent.” Finally, participants used a five-point scale anchored at 0, “none” and 4, “complete” to indicate the pain relief provided by their current therapy.

Neurocognitive battery. The neurocognitive battery was performed by a psychologist (SB) at screening (day -5), baseline (day 0), and during treatment (day 6, 15). A standardized neurocognitive battery was administered to participants. Alternative forms were employed where appropriate. The following cognitive domains with corresponding tests were administered: attention (Trails Making A, Digit Symbol Substitution Test: DSST), memory (Rey Auditory Verbal Learning Test, Immediate and Delayed Condition Recognition: RAVLT), motor-speed (Finger Tapping Speed Test), and executive function (Letter-Number Sequencing, Trails Making B).

Compliance. At each visit, participants were monitored for drug compliance and had to have taken at least 85 percent of the prescribed doses to be considered compliant. During the first week of treatment, if a participant missed ≥ one day of dosing or took > seven capsules during any seven-day period, he or she was instructed on the proper dosing and the importance of maintaining the dosing schedule. If the participant continued to be non-compliant, he or she was dropped from the study.

Safety evaluations

Vital signs were recorded at screening and at each visit during treatment. A physical examination along with chemistry and hematology was performed at screening and prior to discharge at the last study visit. A 12-lead ECG was also obtained at screening. Adverse event information was collected at each visit.

Data analysis

The efficacy endpoints were analyzed for compliant study participants who completed at least the day 6 evaluations (e.g., the evaluable population). The safety analysis was performed for all participants who were exposed to at least one dose of study medication. Parameters measured on more than one day (e.g., days 13 and day 14) during the screening, baseline, or treatment periods were defined as the average of the values obtained at each measurement period. Changes from baseline values were calculated both as a percent-change-from-baseline and as an absolute-change-from-baseline. Changes from screening were calculated as an absolute-change-from-baseline only. Nonparametric statistical methods (e.g., Wilcoxon tests) were used. Hypothesis testing was two-sided and claims of significance were based on two-sided p-values of p-values of 0.05 or less.

RESULTS

Demographics

A total of 127 participants were screened. Of these, 93 did not progress to treatment because they failed the inclusion/exclusion criteria. No participant dropped out of the screening process because of inadequately controlled pain during the placebo washout period. Thus, 34 progressed to receive treatment (e.g., intent-to-treat population) and 31 participated for long enough to be considered evaluable. The demographics of the participants who completed the study include a mean age of 53.7 (range 26 to 75), majority female (27 [79 percent] vs 7 [21 percent]), majority Caucasian (21 [62 percent]), but with
<table>
<thead>
<tr>
<th>Table 1. PSG results</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSG measure</td>
</tr>
<tr>
<td>Sleep continuity</td>
</tr>
<tr>
<td>Sleep efficiency,</td>
</tr>
<tr>
<td>(percent)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Total sleep time,</td>
</tr>
<tr>
<td>(minutes)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Number of</td>
</tr>
<tr>
<td>awakenings, (minutes)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Latency to</td>
</tr>
<tr>
<td>persistent sleep,</td>
</tr>
<tr>
<td>(minutes)</td>
</tr>
<tr>
<td>Wake time after</td>
</tr>
<tr>
<td>sleep onset, (minutes)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Sleep architecture</td>
</tr>
<tr>
<td>REM sleep latency,</td>
</tr>
<tr>
<td>(minutes)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>REM sleep, (minutes)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Stage 2 sleep,</td>
</tr>
<tr>
<td>(minutes)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Stage 3/4 sleep,</td>
</tr>
<tr>
<td>(minutes)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

*Change from screening (former analgesic) where p ≤ 0.05; †Change from placebo baseline where p ≤ 0.05.
However, although some trends did emerge, A-MQD did not significantly impact PSG measures of sleep initiation and maintenance as compared with placebo baseline. Specifically, TST and SE increased while WASO and the Number of Awakenings (NAW) both decreased (Table 1). The treatment subgroups demonstrated varying results on PSG outcome measures. The 30 mg × 14 day group was consistently improved relative to placebo baseline in all aspects of sleep: LPS, WASO, NAW, and REM sleep latency were reduced while SE and TST were increased (Figures 2 to 4). Less consistent results for these measures were seen in 60 mg × 14 day group.

Subjective assessments

Subjective participant assessments of nighttime sleep indicated significant improvement with A-MQD (Table 2 and Figure 5). The entire participant population showed significant improvements in subjective sleep quality at both day 6 and day 15 (p = 0.0001, p ≤ 0.0001) relative to placebo-baseline values. Significance was maintained at day 6 for the 30 mg × 14 day group (p = 0.0254) and at day 15 for the 60 mg × 14 day groups (p = 0.0010). The study population reported sleeping for a mean of 30 minutes longer than at baseline at both the day 6 (p = 0.0691) and day 15 (p = 0.0286) time points. This increase in self-rated Number of Hours of Sleep was significant for the 30 mg × 14 day group (1.1 hours, p = 0.0313) and approached significance for the 60 mg × 14 day group (0.8 hours, p = 0.0625) at day 15.

Daytime alertness, as measured by the ESS, was impacted to a small, but significant degree for the study population as a whole at both day 6 (p = 0.015) and day 15 (p = 0.0150) (Table 2), but no treatment group showed significant reduction in alertness as compared with placebo baseline.

Participants’ assessments of their pain severity and

Figure 4. REM sleep latency, mean change from baseline at day 14. Decrease = Less time to REM sleep; * p < 0.05.

Polysomnography

Given the relatively small size of the study population, measures of sleep continuity initiation, maintenance, and architecture are presented for the participant population as a whole and as a function of dose groups (Table 1 and Figures 2 to 4).

Compared with normal sleepers, the sleep architecture of the study population at screening reflected their sleep disturbances (increased sleep stage 1 [data not shown]; diminished sleep stages 2 and 3/4; longer REM latency), even while stable on prior pain therapy. At baseline, subsequent to the withdrawal of all pain medications, some of these differences were attenuated suggesting that the participants’ previous therapies were negatively affecting their sleep (Table 1). Overall, compared with baseline, treatment with A-MQD preserved sleep architecture and tended to increase stage 2 and stage 3/4 sleep and reduce REM latency.

At study end, REM sleep duration was slightly depressed, dropping to 77.9 minutes vs 83.8 minutes at placebo-baseline. This effect was largely due to a decrease of 11.0 minutes in the 60 mg × 14 day group. In contrast, the 30 mg × 14 day group saw an increase of 3.7 minutes of REM sleep over this period.

For the total study population, PSG sleep parameters were consistently improved by A-MQD compared with measures obtained at screening while on prior therapy. Both Total Sleep Time (TST) and Sleep Efficiency (SE) were significantly increased by study drug while Latency to Persistent Sleep (LPS) and Wake-time-after-Sleep-Onset (WASO) both trended downward (Table 1). However, although some trends did emerge, A-MQD did not significantly impact PSG measures of sleep initiation and maintenance as compared with placebo baseline. Specifically, TST and SE increased while WASO and the Number of Awakenings (NAW) both decreased (Table 1).

The treatment subgroups demonstrated varying results on PSG outcome measures. The 30 mg × 14 day group was consistently improved relative to placebo baseline in all aspects of sleep: LPS, WASO, NAW, and REM sleep latency were reduced while SE and TST were increased (Figures 2 to 4). Less consistent results for these measures were seen in 60 mg × 14 day group.
their acceptance of, and relief provided by, the study drug indicate that A-MQD was an effective treatment for osteoarthritis pain (Table 3). Relative to placebo-baseline values, the BPI Average Pain scores were significantly improved for the total population (day 6, \(p = 0.0016 \); day 15, \(p < 0.0001 \)), the 30 mg \(\times 14 \) day group (day 6, \(p = 0.0098 \); day 15, \(p = 0.0078 \)) and the 60 mg \(\times 14 \) day group (day 15, \(p = 0.0039 \)) (Table 3). The study population as a whole showed a significant increase in Acceptance of Current Therapy at day 6 (\(p = 0.0011 \)) and day 15 (\(p = 0.0006 \)) and indicated experiencing a significant improvement in Relief from Current Therapy (day 6 and day 15, \(p < 0.001 \)) relative to placebo-baseline values.

Neurocognitive battery

Treatment with A-MQD significantly enhanced cognition as compared with performance on prior analgesics and after a wash-out phase. When all treatment groups were combined (\(n = 31 \)) significant improvement from screening (prior analgesics) was observed at day 15 for Letter Number Sequencing, Trails Making part A&B, DSST, and RAVLT Immediate and Delayed Condition tests (\(p = 0.0237, p = 0.0004, p = 0.0039, p = 0.0231, p < 0.0001, \) and \(p < 0.0001 \), respectively). Trend improvement or no change was observed for other measures.

Significant improvements were also seen relative to placebo baseline on the RAVLT (\(p = 0.0136 \)) and Trail Making part A (\(p = 0.0045 \)) evaluations. Trend improvement or no change was observed for other measures. A thorough presentation of these results will be reported elsewhere.

Safety

A-MQD was generally safe and well tolerated. Side effects did not appear to exhibit a dose effect. Twenty-two patients experienced one or more adverse events, most of which were mild to moderate in severity. The most common adverse events (occurring in > 10 percent of all treated participants) were nausea (\(n = 10, 29 \) percent), sedation (\(n = 5, 15 \) percent), constipation (\(n = 5, 15 \) percent), vomiting (\(n = 4, 12 \) percent), and pruritus (\(n = 4, 12 \) percent). All of these events were consistent with the known effects of the study drug and had been observed in previous clinical trials.

Serious adverse events (SAEs) occurred in one participant (3 percent) while receiving 60 mg/d for eight days. The SAEs (experienced simultaneously) were severe sedation and unresponsiveness in this participant who was subsequently found to have previously undiagnosed hypothyroidism. The participant subsequently recovered from these adverse events.

<table>
<thead>
<tr>
<th>Subjective measure</th>
<th>Time point</th>
<th>All evaluable ((n = 31))</th>
<th>30 mg (\times 14) d ((n = 10))</th>
<th>60 mg (\times 8) d ((n = 9))</th>
<th>60 mg (\times 14) d ((n = 12))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epworth sleepiness score (< 8, normal; higher score indicates more sleepiness)</td>
<td>Screening</td>
<td>5.3</td>
<td>4.4</td>
<td>6.3</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td>Baseline</td>
<td>4.7</td>
<td>3.7</td>
<td>5.3</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>Day 6</td>
<td>5.4*</td>
<td>4.5</td>
<td>6.7</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td>Day 14</td>
<td>6.6*</td>
<td>5.4</td>
<td>7.5</td>
<td>6.8</td>
</tr>
<tr>
<td>Number of hours of sleep</td>
<td>Screening</td>
<td>5.9</td>
<td>5.9</td>
<td>5.7</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>Baseline</td>
<td>6.1</td>
<td>6.3</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>Day 6</td>
<td>6.6</td>
<td>7.2</td>
<td>5.9</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td>Day 14</td>
<td>6.6*</td>
<td>7.4*</td>
<td>5.3</td>
<td>6.8*</td>
</tr>
<tr>
<td>Overall quality of sleep (0, poor sleep; 100, best sleep; increase, better sleep)</td>
<td>Screening</td>
<td>33.3</td>
<td>27.3</td>
<td>35.9</td>
<td>36.3</td>
</tr>
<tr>
<td></td>
<td>Baseline</td>
<td>40.9</td>
<td>46.1</td>
<td>43.4</td>
<td>34.7</td>
</tr>
<tr>
<td></td>
<td>Day 6</td>
<td>57.9*</td>
<td>64.7*</td>
<td>55.0*</td>
<td>54.5</td>
</tr>
<tr>
<td></td>
<td>Day 14</td>
<td>64.3*</td>
<td>61.8*</td>
<td>61.4*</td>
<td>68.3*</td>
</tr>
</tbody>
</table>

*Change from placebo baseline where \(p < 0.05 \); †Change from screening (former analgesic) where \(p \leq 0.05 \).

DISCUSSION

This single-center, placebo-baseline-controlled, single-treatment, single-blind study was designed to evaluate the impact of using A-MQD on objective and subjective measures of sleep as well as pain in participants with osteoarthritis complaining of sleep disturbances. Objective single-blind placebo baseline sleep characteristics confirmed the subjective perception of sleep disturbance due to chronic pain. The sleep fragmentation, low sleep efficiency, and poor subjective sleep quality in these chronic osteoarthritis participants were consistent with observations in other sleep studies in chronic pain participants.16-18 Importantly, these sleep disturbances were present to an even greater degree during screening when participants were observed on their previous stable regimens of pain and sleep aids.

After withdrawal of all pain and sleep medication to establish baseline characteristics, participants were treated with either 30 or 60 mg/d of study drug for a period of 14 to 20 days. The results were very encouraging and intriguing: on the basis of objective and subjective outcome measures, the study drug improved both sleep and pain. Although improvements were not always statistically significant, likely owing to the small sample size, the overall trends were positive.

Treatment effects on sleep architecture included increases in the amount stage 2 and stage 3/4 sleep relative to both placebo baseline and screening (prior therapy) levels. In contrast to previous PSG studies of acute dosing with opioids at bedtime, A-MQD increased NREM sleep time when taken in the morning. REM latency was also significantly reduced with respect to both placebo baseline and screening observations. While minor, non-significant REM suppression vs baseline was seen with A-MQD, the time spent in REM sleep was markedly increased relative to the values seen at screening when participants were still taking their prior pain medication.

In addition, objective measures of sleep initiation and continuity as assessed in the participant population as a whole were improved by study drug when compared with placebo-baseline levels. TST and SE were increased while LPS, NAW, and WASO were reduced. Importantly, LPS, SE, TST, and WASO improvements were even greater when compared with screening values obtained when participants were on their previous stable regimens of pain and sleep medications.

Subjective assessments of sleep quality indicated that

<table>
<thead>
<tr>
<th>Subjective measure</th>
<th>Time point</th>
<th>All evaluable (n = 31)</th>
<th>30 mg × 14 d (n = 10)</th>
<th>60 mg × 8 d (n = 9)</th>
<th>60 mg × 14 d (n = 12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPI: “Pain on Average” (0, no pain; 10, worst pain)</td>
<td>Screening</td>
<td>6.1</td>
<td>6.6</td>
<td>5.3</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td>Baseline</td>
<td>6.1</td>
<td>6.2</td>
<td>5.2</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td>Day 6</td>
<td>5.3</td>
<td>4.5</td>
<td>4.9</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td>Day 14</td>
<td>4.1†</td>
<td>3.8†</td>
<td>4.1</td>
<td>4.3†</td>
</tr>
<tr>
<td>Acceptability of therapy (0, none; 5, excellent)</td>
<td>Screening</td>
<td>2.5</td>
<td>2.4</td>
<td>2.6</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>Baseline</td>
<td>2.7</td>
<td>3.0</td>
<td>3.1</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>Day 6</td>
<td>3.6</td>
<td>3.7</td>
<td>3.4</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>Day 14</td>
<td>3.8‡</td>
<td>3.7</td>
<td>4.0</td>
<td>3.8‡</td>
</tr>
<tr>
<td>Pain relief from current Rx (0, none; 5, excellent)</td>
<td>Screening</td>
<td>2.4</td>
<td>2.3</td>
<td>2.3</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>Baseline</td>
<td>2.0</td>
<td>2.5</td>
<td>1.8</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>Day 6</td>
<td>3.0</td>
<td>3.2</td>
<td>2.6</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>Day 14</td>
<td>3.5†</td>
<td>3.6†</td>
<td>3.4†</td>
<td>3.5†</td>
</tr>
</tbody>
</table>

*Change from baseline where p < 0.05; †Change from screening where p < 0.05.
there was a clear perception of improved sleep with A-MQD. Perceived sleep quality and the subjective Number of Hours of Sleep were significantly improved across the total participant population. Again, these improvements were even greater when compared with screening (prior therapy) levels. Although daytime sleepiness as measured by ESS was significantly impaired relative to placebo baseline for the total population at both the day 6 and day 15, the actual ESS scores were within the range traditionally considered normal (ESS < 7). In view of the well-known sedative effects of morphine, it is reasonable to observe some drowsiness in this relatively short study with its limited time to tolerate this effect. Study results may indicate that A-MQD's extended release formulation may produce milder effects on alertness than an immediate release treatment.

A-MQD was also clearly effective as a pain medication. Significant improvements were seen at both days 6 and 15 on the BPI and participant ratings of the Acceptance of and Relief from Current Therapy. Scores on each of these scales also indicated improvements relative to screening values, indicating that the study drug was better at managing pain symptoms than the previous therapies utilized by participants.

Furthermore, results from the neurocognitive battery seemed to indicate that A-MQD may have enhanced cognition in this participant group relative to prior therapy. While the underlying biological underpinnings of these findings are unknown, it is possible that either the reduction of pain or the resumption of sleep may have accounted for the enhancement of mnemonic and attentional functioning. These results will be presented at greater length in a subsequent publication.

As mentioned earlier, a limitation of this study is its design as a placebo-baseline-controlled, single-treatment, single-blind study. However, the choice of a baseline control design was deliberate because of two concerns. First, there were significant ethical concerns that a separate placebo control arm design would potentially convey negative consequences to participants resulting from the cessation of pain relief therapy. Second, concerns about loss of study sensitivity linked to the expected heterogeneity of the study population were expected. These expectations of participant heterogeneity were supported by the need to increase the dose of study medication for those participants complaining of inadequate pain relief at day 6. We hypothesize that participants in the 30-mg group had mild to moderate chronic osteoarthritic pain, while participants who received 60 mg for any period of time could be considered to have moderate to severe pain, which was more difficult to control by the use of medication. This difference in pain level could be expected to significantly impact the variability of improvements in sleep seen across treatment groups, especially if the dose level did not reach therapeutic levels for an individual participant.

The extension of time under treatment for participants in the 60 mg × 14 day group added a temporal difference into study group comparisons. This change was introduced to allow the acute effects associated with transition to a new dose level to stabilize and permit equal amounts of time at a pain relieving dose. Nonetheless, it may be argued that the drug effect after two weeks (observed for participants in the 30 mg × 14 day and 60 mg × 8 day groups) may not be comparable to the drug effect seen after three weeks of treatment (60 mg × 14 day group). Morphine therapies are associated with the evolution of some level of tolerance to side effects, so the protocol change was expected to make the groups more comparable.

The results of this study suggest that A-MQD may be an effective treatment for participants with osteoarthritis pain and accompanying sleep disturbances. The improvements seen in all participants within measures of pain and sleep relative to untreated participants (placebo baseline) and participants with previous pain therapy (screening) may indicate that the previous therapies 1) were insufficient for the level of pain being experienced and 2) may have exacerbated the secondary sleeping difficulties experienced by participants. These data confirm the activity of A-MQD for the treatment of chronic moderate to severe osteoarthritis pain and support prior observations that with A-MQD pain therapy participants may expect improvements in the sleep disturbances commonly experienced by this participant population. More research could provide additional, helpful insights to inform clinicians’ choices regarding the relationship between management of chronic pain and its associated sleep disturbances as well as further delineate A-MQD’s ability to improve sleep and daytime functional outcomes in chronic pain populations.
ACKNOWLEDGMENTS

The authors gratefully acknowledge the technical contributions of Cheryl Spinweber, PhD, and Al Aghulos, RPSGT, in reviewing the polysomnograms in this research study.

Murray Rosenthal, DO, California Clinical Trials, San Diego, California.
Polly Moore, PhD, California Clinical Trials, San Diego, California.
Eric Groves, MD, PhD, Ligand Pharmaceuticals Inc, San Diego, California.
Tad Iwan, BA, Ligand Pharmaceuticals Inc, San Diego, California.
Lisa Greenberg Schlosser, MS, Ligand Pharmaceuticals Inc, San Diego, California.
Zofia Dziewanowska, MD, PhD, Ligand Pharmaceuticals Inc, San Diego, California.
Andres Negro-Vilar, MD, PhD, Ligand Pharmaceuticals Inc, San Diego, California.

REFERENCES

ABSTRACT

The authors investigated, in a randomized, placebo-controlled, double-blinded study, the efficacy and safety of lornoxicam on pain after abdominal hysterectomy and on tramadol consumption in patients. Fifty patients were randomized to receive either oral placebo or lornoxicam 8 mg one hour before surgery. Anesthesia was induced with propofol and maintained with sevoflurane in 50 percent N₂O/O₂ with a fresh gas flow of 2 L/min (50 percent N₂O in O₂) and fentanyl (2 µg/kg). All patients received patient-controlled analgesia with tramadol with loading dose of 50 mg; incremental dose of 20 mg; lock out interval of 10 minute; and four-hour limit 300 mg. The incremental dose was increased to 30 mg if analgesia was inadequate after one hour. Patients were studied at one, two, four, eight, 12, and 24 hours for visual analogue (VAS) pain scores, heart rate, mean arterial pressure, periferic oxygen saturation, sedation, tramadol consumption, and length of hospitalization. VAS scores at one hour were significantly lower in the lornoxicam group (p < 0.001). The tramadol consumption at one, two, four, eight, and 12 hours was significantly lower in the lornoxicam group when compared with the placebo group (p < 0.001, p = 0.008, p = 0.029, p = 0.034, p = 0.042, respectively). Sedation scores were similar at all the measured times in the groups. Length of hospitalization was significantly shorter in lornoxicam group (4.8 ± 0.4 day) than placebo group (5.2 ± 0.5 day) (p = 0.005). There was difference in the incidence of nausea between the groups (p = 0.047). The number of patients and the doses of antiemetics given during the first 24 hours after surgery in lornoxicam group were less than those in placebo group (p = 0.003, p = 0.034, respectively).

In conclusion, a single oral dose of lornoxicam given preoperatively enhanced the analgesic effect of tramadol, decreasing tramadol consumption and side effects, and shortened the length of hospitalization.

Key words: analgesics opioid, tramadol, lornoxicam, postoperative pain, hysterectomy

INTRODUCTION

Postoperative pain is a factor that affects recovery from surgery and anaesthesia. The use of opioids by patient controlled analgesia (PCA) is popular, but is limited by side effects and by the fact that certain types of pain respond poorly to opioids. Because of the multiplicity of mechanisms involved in postoperative pain, a multimodal analgesic regimen, using a combination of opioid and nonopioid analgesic drugs, is often used to enhance analgesic efficacy and to reduce opioid requirements and side effects.

Lornoxicam is a member of the oxicam group of nonsteroidal anti-inflammatory drugs (NSAIDs). It is rapidly eliminated, having a short plasma elimination half-life of three to five hours, which suggests its suitability for acute use during the postoperative period. The clinical trials published so far, mostly comparative, clearly document lornoxicam’s efficacy as a potent analgesic with excellent anti-inflammatory properties in a range of painful and/or inflammatory conditions, including postoperative pain. Lornoxicam has been shown to be at least as effective as comparable NSAIDs, and more effective than 10 mg morphine, when used at doses of 3.8 mg to control pain after oral surgery.

The present study’s aim was to determine the lornoxicam’s effect on postoperative pain and on patient controlled tramadol consumption in patients after abdominal hysterectomy.

METHODS

After obtaining the approval of the Institutional Ethics Committee (Trakya University, Edirne, Turkey) and written informed consent from the patients, 50 patients, ASA physical status I-II, undergoing elective total abdominal hysterectomy with salpingo-oophorectomy were studied. Patients were eligible for participation if they were at least 18 years old, weighed more than 40 kg, and could operate a patient controlled analgesia (PCA) device. Exclusion criteria were known allergy to opioids,
asthma, contraindications to tramadol or any drug used, renal insufficiency, a history of a peptic ulcer, or a history of a bleeding diathesis.

The patients were randomly divided into two groups of 25 patients each. The study design was randomized and double-blinded: Patients were randomly allocated according to computer-generated randomization. For premedication, midazolam 0.07 mg/kg and atropine 0.01 mg/kg were administered IM 45 minutes before the surgical procedure. Patients in the control group received an oral placebo capsule, and those in the lornoxicam group received 8 mg lornoxicam (Xefo, 8 mg, Abdi Ibrahim, Istanbul, Turkey) (n = 20, Group I) one hour prior to surgery. The study drugs were prepared by the pharmacy, and an appropriate code number was assigned.

In the operating room, a crystalloid infusion was started through an IV cannula inserted in an antecubital vein, and the mean arterial pressure (MAP), heart rate (HR), and peripheral oxygen saturation (SpO₂) were monitored (Cato PM 8040; Dräger, Lübeck, Germany). Anesthesia was induced with propofol (2 mg/kg) and atracurium (0.5 mg/kg), and maintained with sevoflurane with a fresh gas flow of 2 L/min (50 percent N₂O in O₂) and fentanyl (2 µg/kg). Surgery was performed via a Pfannenstiel incision. The lungs of the patients were mechanically ventilated (Cato; Dräger, Lübeck, Germany), and ventilation was adjusted to maintain end-expiratory CO₂ between 34 and 36 mmHg. At the end of surgery, neuromuscular block was antagonized with neostigmine 1.5 mg and atropine 0.5 mg.

Table 1. Demographic characteristics and perioperative data*

<table>
<thead>
<tr>
<th>Variable</th>
<th>Placebo (n = 25)</th>
<th>Lornoxicam (n = 25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>48.24 ± 7.95</td>
<td>47.72 ± 8.01</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>67.36 ± 13.3</td>
<td>68.04 ± 13.40</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>158.0 ± 5</td>
<td>156 ± 7</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>28 ± 1.2</td>
<td>28.4 ± 2</td>
</tr>
<tr>
<td>ASA physical status (I/II)</td>
<td>15/10</td>
<td>16/9</td>
</tr>
<tr>
<td>Duration of anesthesia (min)</td>
<td>130.88 ± 31.51</td>
<td>129.12 ± 30.07</td>
</tr>
</tbody>
</table>

*Values are shown as number (n) of patients or mean ± SD. No significant differences were found between the groups.

Table 2. Postoperative HR and MAP*

<table>
<thead>
<tr>
<th>Hours after operation</th>
<th>Placebo (n=25)</th>
<th>Lornoxicam (n = 25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR</td>
<td>78.80 ± 6.45</td>
<td>79.24 ± 9.79</td>
</tr>
<tr>
<td>MAP</td>
<td>88.35 ± 11.22</td>
<td>88.52 ± 9.69</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR</td>
<td>79.20 ± 6.19</td>
<td>78.96 ± 8.93</td>
</tr>
<tr>
<td>MAP</td>
<td>88.20 ± 10.0</td>
<td>88.96 ± 9.76</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR</td>
<td>79.44 ± 7.88</td>
<td>78.88 ± 7.10</td>
</tr>
<tr>
<td>MAP</td>
<td>88.84 ± 10.50</td>
<td>89.52 ± 8.80</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR</td>
<td>81.04 ± 5.89</td>
<td>80.56 ± 4.86</td>
</tr>
<tr>
<td>MAP</td>
<td>89.76 ± 9.81</td>
<td>88.04 ± 9.89</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR</td>
<td>80.16 ± 4.96</td>
<td>81.12 ± 5.66</td>
</tr>
<tr>
<td>MAP</td>
<td>86.52 ± 8.25</td>
<td>89.52 ± 8.91</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR</td>
<td>80.0 ± 6.53</td>
<td>80.48 ± 7.60</td>
</tr>
<tr>
<td>MAP</td>
<td>88.64 ± 8.50</td>
<td>87.04 ± 7.49</td>
</tr>
</tbody>
</table>

*HR, heart rate (beats/min); MAP, mean arterial pressure (mmHg). HR and MAP are presented as mean ± SD. No statistical difference was found between groups.
After tracheal extubation, patients were transferred to the postanaesthesia care unit (PACU). Postoperative pain was assessed based on the visual analogue score (VAS, where 0 cm, “no pain” and 10 cm, “worst pain imaginable”). Postoperative analgesia was provided with IV-PCA tramadol. The PCA technique and the VAS were explained to the patients during their preoperative visit. Patients were connected to the PCA device (Abbott Pain Management Provider, North Chicago, IL) upon their arrival in the PACU. All patients received tramadol PCA (3 mg/mL) with a loading dose of 50 mg, an incremental dose of 20 mg, a lockout interval of 10 minute, and a four-hour limit of 300 mg. The incremental dose was increased to 30 mg if the analgesia was inadequate after one hour. Sedation was assessed by the Ramsay sedation scale. During the first hour in the PACU, and then at two, four, eight, 12, and 24 hours, the patients’ pain scores were evaluated. HR, SpO₂, MAP, sedation, tramadol use, and total dose of tramadol were assessed by an anaesthesia resident not otherwise involved in the study. The occurrence of any side effects, such as nausea and vomiting, constipation, respiratory depression, dizziness, somnolence, peripheral edema, diarrhea, headache, and pruritus, was recorded. Tramadol was stopped if a patient had an oxygen saturation, measured by pulse oximetry, less than 95 percent, or a serious adverse event related to opioid administration. On the patient’s request, or if nausea and vomiting occurred, ondansetron 4 mg IV was given. All measurements were recorded by the same anaesthesia resident, who was blinded to the study drugs administered.

Statistical analysis

A sample size of 25 patients by group was calculated to detect a significant difference of 15 percent or more in tramadol consumption with a power of 85 percent and a significance level of 5 percent. Descriptive statistics are expressed as mean ± SD unless otherwise stated. All variables were tested for normal distribution by Kolmogorov-Smirnov test. Student t test was used for comparison of the means of continuous variables and normally distributed data. Mann-Whitney U test was used otherwise. Two-way analysis of variance or Friedman test was used for variable differences in groups, and Bonferroni or Tukey HSD test was used for multiple comparisons. Categorical data were analyzed using χ² test analysis or the Fisher exact, as appropriate. Significance was determined at p < 0.05.

RESULTS

Fifty consecutive patients who fulfilled the inclusion criteria were included in the study. All the patients allocated completed the study; data from all 50 patients were therefore analyzed.

The groups were comparable with respect to age, body weight, height, ASA status, and duration of surgery (Table 1). MBP and HR did not differ between the groups at any of the measured times (Table 2).

The VAS scores were significantly lower one hour postoperative in the lornoxicam group than in the placebo group (p < 0.001) (Table 3). Sedation scores were similar at all the measured times in the lornoxicam and placebo groups (Table 3). No patient exhibited excessive sedation requiring alteration of the PCA settings or discontinuation.

Tramadol consumption at one, two, four, eight, and 12 hours was significantly lower in the lornoxicam group than in the placebo group (p < 0.001, p = 0.008, p = 0.029, p = 0.034, p = 0.042, respectively) (Table 4). Length of hospitalization was significantly shorter in the lornoxicam group (4.8 ± 0.4 days) than in the placebo group (5.2 ± 0.5 days) (p = 0.005).

Table 3. Postoperative pain and sedation scores in lornoxicam and placebo groups*

<table>
<thead>
<tr>
<th>Variable (h)</th>
<th>Placebo (n = 25)</th>
<th></th>
<th>Lornoxicam (n = 25)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sedation</td>
<td>VAS</td>
<td>Sedation</td>
<td>VAS</td>
</tr>
<tr>
<td>1</td>
<td>2 (1-3)</td>
<td>4 (1-8)</td>
<td>2 (1-3)</td>
<td>2 (0-5)†</td>
</tr>
<tr>
<td>2</td>
<td>2 (1-3)</td>
<td>5 (2-6)</td>
<td>2 (1-3)</td>
<td>2 (0-5)</td>
</tr>
<tr>
<td>4</td>
<td>2 (2-2)</td>
<td>3 (0-4)</td>
<td>2 (2-3)</td>
<td>2 (0-6)</td>
</tr>
<tr>
<td>8</td>
<td>2 (2-2)</td>
<td>2 (0-3)</td>
<td>2 (2-3)</td>
<td>1 (0-3)</td>
</tr>
<tr>
<td>12</td>
<td>2 (2-3)</td>
<td>0 (0-3)</td>
<td>2 (2-3)</td>
<td>0 (0-2)</td>
</tr>
<tr>
<td>24</td>
<td>2 (2-2)</td>
<td>0 (0-2)</td>
<td>2 (2-2)</td>
<td>0 (0-1)</td>
</tr>
</tbody>
</table>

*Pain and sedation scores are median (min-max). †The VAS scores were significantly lower one hour postoperative in the lornoxicam group than in the placebo group (p < 0.001).
The most common side effects seen during the study were nausea and vomiting (Table 5), and there was a difference in the incidence of nausea between the groups \((p = 0.047)\). The number of patients and the doses in patients receiving antiemetics during the first 24 hours after surgery was less in the lornoxicam group than in the placebo group \((p = 0.003, p = 0.034\) respectively) (Table 6). No patient had oxygen saturation less than 95 percent or a serious adverse event related to opioid administration.

DISCUSSION

The results of our preoperative oral single-dose study investigating lornoxicam’s acute postoperative analgesic effects in patients after total abdominal hysterectomy show that: 1) Lornoxicam decreased postoperative tramadol consumption, 2) Lornoxicam was not associated with more side effects than the placebo, and 3) Lornoxicam shortened the length of hospitalization.

The main aim of combining different analgesic drugs is to obtain synergistic or additive analgesia, allowing a lower dose of each agent and improving the safety profile. This can be achieved by combining analgesics acting at different locations, e.g., centrally and peripherally acting analgesics. Tramadol can be used in PCA for moderate-to-severe postoperative pain. Its efficacy arises from two complementary mechanisms of action: stimulation of opioid receptors and inhibition of norepinephrine and 5-hydroxytryptamine reuptake in pain pathways.\(^8\)

The NSAIDs act at peripheral nociceptors, preventing pain by inhibiting cyclo-oxygenase and thus reducing biosynthesis of pain-promoting prostaglandin derivatives in the periphery, produced in response to tissue injury. In addition, increasing evidence suggests that NSAIDs directly inhibit spinal nociceptor processing, an effect that correlates with various NSAIDs’ ability to inhibit cyclo-oxygenase.\(^9,10\)

The NSAIDs are commonly used analgesics for minor surgery and are useful adjunctive analgesics in patients undergoing major surgery, decreasing their pain and opioid requirements. They are well established, effective, and inexpensive. Trampitsch et al.\(^11\) demonstrated that lornoxicam (8-mg bolus every eight hours for a total dose of 24 mg in the first 24 hours) administered preemptively improved the quality of postoperative analgesia and led to reduced consumption of opioid.

<table>
<thead>
<tr>
<th>Hours</th>
<th>Placebo (n = 25)</th>
<th>Lornoxicam (n = 25)</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>110.57 ± 27.54</td>
<td>80.54 ± 27.54</td>
<td>< 0.001</td>
</tr>
<tr>
<td>2</td>
<td>168.01 ± 38.55</td>
<td>132.85 ± 50.51</td>
<td>0.008</td>
</tr>
<tr>
<td>4</td>
<td>222.62 ± 45.54</td>
<td>177.27 ± 68.15</td>
<td>0.029</td>
</tr>
<tr>
<td>8</td>
<td>310.54 ± 70.11</td>
<td>262.02 ± 86.35</td>
<td>0.034</td>
</tr>
<tr>
<td>12</td>
<td>350.14 ± 86.01</td>
<td>295.45 ± 98.40</td>
<td>0.042</td>
</tr>
<tr>
<td>24</td>
<td>392.89 ± 111.03</td>
<td>331.89 ± 111.03</td>
<td>0.082</td>
</tr>
</tbody>
</table>

Tramadol doses are expressed as mean ± SD. Tramadol consumption at one, two, four, eight, and 12 hours was significantly lower in the lornoxicam group than in the placebo group.

<table>
<thead>
<tr>
<th>Side effect</th>
<th>Placebo (n = 25)</th>
<th>Lornoxicam (n = 25)</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea</td>
<td>17 (68 percent)</td>
<td>10 (40 percent)</td>
<td>0.047</td>
</tr>
<tr>
<td>Vomiting</td>
<td>5 (20 percent)</td>
<td>5 (20 percent)</td>
<td>1.000</td>
</tr>
<tr>
<td>Ortastatic hypotension</td>
<td>0 (0 percent)</td>
<td>1 (4 percent)</td>
<td>0.820</td>
</tr>
<tr>
<td>Flushing</td>
<td>1 (4 percent)</td>
<td>0 (0 percent)</td>
<td>0.820</td>
</tr>
</tbody>
</table>

Values are shown as number (n) of patients. The incidence of nausea was less in the lornoxicam group than in the placebo group.
analgesics postoperatively in patients undergoing gynecological operations. Ilias and Jansen12 found that intravenous lornoxicam at a dose of 8 mg is superior to a placebo and is at least as effective as intravenous tramadol 50 mg in relieving moderate to intolerable posthysterectomy pain. Karaman et al.13 found that lornoxicam 8 mg administered preemptively reduced postoperative pain and morphine consumption in patients undergoing gynecological operations in the early postoperative period. In our study, a single oral dose of lornoxicam given preoperatively enhanced tramadol’s analgesic effect, decreasing tramadol consumption. Assessment of acute pain utilizing the VAS in a scientific clinical investigation is inadequate. Sometimes this practice relies on subjective evaluation by a person who has little power to modify an inadequate prescription.14 Fosnocht et al.15 found that VAS is not a valid indicator of pain relief for individual patients. The concept of PCA may be regarded as a simple closed-loop system. The patient determines the dose required to maintain adequate analgesia. The optimum plasma concentration, as determined by the patient, is that which satisfies his subjective requirement for analgesia.14 Lornoxicam was well tolerated and was associated with a lower incidence of adverse events than tramadol alone. It may be an effective adjuvant to PCA tramadol for postoperative pain control. This combination reduces the total consumption of PCA tramadol and reduces side effects. Length of hospitalization was significantly shorter in the lornoxicam group than in the placebo group. Lornoxicam is well tolerated, elicited few side effects, and decreased patients’ tramadol requirement; these effects may speed recovery and discharge.

In conclusion, a single oral dose of lornoxicam given preoperatively enhanced the tramadol’s analgesic effect, decreasing both tramadol consumption and side effects. In addition, this strategy also may contribute to early discharge from the hospital after total abdominal hysterectomy. Further studies, however, are required in different pain models to investigate this drug’s efficacy alone or in combination with other analgesics.

\textbf{Acknowledgments}

Support was provided from institutional and/or departmental sources.

\begin{table}[h]
\centering
\caption{Number of patients receiving antiemetics, and doses in patients receiving antiemetics during the first 24 hours after surgery*} \label{table:antiemetics}
\begin{tabular}{|l|l|l|}
\hline
 & Placebo (n = 25) & Lornoxicam (n = 25) & p \\
\hline
Number of patients receiving antiemetics & 16/25 & 7/25 & 0.034 \\
Number of doses in patients receiving antiemetics & 7.36 ± 6.08 & 3.84 ± 5.22 & 0.003 \\
\hline
\end{tabular}
\end{table}

*Values are shown as number (n) of patients. The number of patients and doses in patients receiving antiemetics during the first 24 hour after surgery was less in the lornoxicam group than in the placebo group.

\textbf{References}

REPRINT ORDER FORM

Note: While one photocopy is permissible, multiple reproduction of materials published in the Journal of Opioid Management is prohibited without written permission of the publisher.

For educational classroom use, quantity 200 or less, contact Copyright Clearance Center (222 Rosewood Dr., Danvers, MA 01923, 978-750-8400) directly. For all other uses, please order reprints using this form.

Author __________________________ Issue __________________________

Title of article __

Page numbers _______________________ Quantity _______________________

Minimum order, 100—minimum price based on four pages. For orders over 500 copies, please write or call for quotation. Postage and/or freight included for shipment to US and Canada. Duties and taxes extra. For reprints over 20 pages, call for rates. All reprint prices in effect for 1-year from publication date. Past 1-year, call for rates. Delivery 3-6 weeks from order acceptance. All reprints run on Docutech. For reprints printed Offset on coated stock, call for custom quote.

<table>
<thead>
<tr>
<th>Pages</th>
<th>1-4</th>
<th>5-8</th>
<th>9-12</th>
<th>13-16</th>
<th>17-20</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Copies</td>
<td>105.00</td>
<td>215.00</td>
<td>310.00</td>
<td>415.00</td>
<td>545.00</td>
</tr>
<tr>
<td>200 Copies</td>
<td>200.00</td>
<td>400.00</td>
<td>600.00</td>
<td>800.00</td>
<td>1000.00</td>
</tr>
<tr>
<td>300 Copies</td>
<td>285.00</td>
<td>570.00</td>
<td>855.00</td>
<td>1140.00</td>
<td>1425.00</td>
</tr>
<tr>
<td>400 Copies</td>
<td>360.00</td>
<td>720.00</td>
<td>1080.00</td>
<td>1440.00</td>
<td>1800.00</td>
</tr>
<tr>
<td>500 Copies</td>
<td>425.00</td>
<td>850.00</td>
<td>1275.00</td>
<td>1700.00</td>
<td>2125.00</td>
</tr>
</tbody>
</table>

Billing Info:

☐ All orders must be prepaid by check, credit card or purchase order.
☐ Charge my ☐ Visa ☐ MasterCard ☐ AMEX ☐ Discover Account #

Expiration date __________________________

Signature __________________________

Cardholder address __________________________

Tel () _______________ Fax () _______________

E-mail __________________________

Billing order/purchase number __________________________

Ordering Info:

Ordered by __________________________

Institution __________________________

Address __________________________

City __________________ State __________________ Zip __________________

E-mail __________________________

Ship To:

Name __________________________

Institution __________________________

Address __________________________

City __________________ State __________________ Zip __________________

E-mail __________________________

Journal of Opioid Management
470 Boston Post Road, Weston, MA 02493 • 781-899-2702 • Fax: 781-899-4900 • www.opioidmanagement.com
INTRODUCTION

The traditional view that opioids have only central effects has been challenged now as investigators have identified peripheral sites of opioid action. All classes of opioid receptors have been demonstrated on peripheral nerve terminals, and are similar to the population of receptors found in the central nervous system. Opioid receptors are not obvious in normal tissue but become evident within minutes to hours after the start of inflammation and can be found within the dorsal root ganglia and peripheral sensory nerves, and on lymphocytes, macrophages, and mast cells. The confirmation that peripheral opioid receptors exist has led to the possibility of specific targeting of peripheral receptors. The potential advantages of delivering opioids peripherally, for example, topical application, include maximizing opioid concentration at the site of pain and lower plasma levels with potentially fewer adverse effects and fewer drug interactions.

A number of studies have investigated the local analgesic effects of opioids in the clinical setting; most have focused at intra-articular opioid administration and have demonstrated that analgesia can be prolonged and effective, and successful doses are relatively low and usually free from systemic adverse effects. Opioids have also been applied topically to malignant and nonmalignant ulcers in a palliative care setting. The most commonly applied opioid is morphine although there are also reports of diamorphine, fentanyl, oxycodone, hydromorphone, and methadone use. Most studies have been case reports in adults although some controlled studies in adults and small case series in children have also been published. The majority of patients described have presented with painful nonmalignant ulcers, in particular pressure sores. We describe four case studies of patients who present with pain from malignant ulcers in which topical morphine provided effective, safe, and well-tolerated analgesia.

CASE STUDIES

Case 1

GE was a 64-year-old woman with cervical carcinoma and pelvic metastases; her previous treatment included surgery, radiotherapy, and chemotherapy. On admission she presented with severe sacral pain (numerical rating score [NRS] 9) caused by a stage III, noninfected, malodorous ulcer. Her skin was erythematous and cytological examination did not reveal neoplastic infiltration. For regularly scheduled around-the-clock (ATC) analgesia she used transdermal fentanyl 100 μg/h, which controlled the background pain caused by the pelvic disease. The sacral ulcer was washed with ringer lactate and metronidazole solution (three times daily) after which morphine sulphate 10 mg in intrasite gel 8 g was applied directly to the ulcer; ATC analgesia was not modified. After 24 hours the patient reported a fall in pain intensity (NRS 4). Neither patients nor nursing staff reported local or systemic treatment related adverse effects and the patient was discharged after seven days, with almost complete control of pain (NRS 1), and ATC analgesia remained unchanged.

Case 2

RA was a 76-year-old woman with breast cancer and liver, lung, and bone metastases. She had previously been treated with surgery, radiotherapy, and several lines of chemotherapy, and her on-going analgesic therapy included zoledronic acid 4 mg IV monthly and tramadol 100 mg three times daily, all used for the management of her background pain. On admission she presented with sternal pain resulting from a malignant ulcer. She rated her pain as NRS 6 and stated that the pain interrupted her sleep. Topical application of morphine sulphate 10 mg in intrasite gel 8 g after premedication with ringer lactate and metronidazole solution was started and carried out
three times daily; the dose of tramadol was not changed. After 24 hours the patient reported an NRS of 3 and her sleep improved. Nurses and patient reported no local or systemic adverse effects and the patient was discharged home after seven days with complete pain control (NRS 0). The patient continued on topical morphine application and the previous analgesic regimen remained unchanged.

Case 3

VS was a 71-year-old woman with metastatic vulval cancer previously treated with radiotherapy and chemotherapy. On admission she complained of pain localized to the vulval and pubic regions, which she rated as NRS 9, and not controlled by a subcutaneous infusion of morphine 30 mg over 24 hours and oral preparations of gabapentin 300 mg three times daily and nimesulide 100 mg twice daily. Vulval examination revealed three noninfected malignant ulcers, two localized at the vulva and one at the pubis. Morphine sulphate 10 mg in intrasite gel 8 g was applied topically to the ulcers after premedication with ringer lactate and metronidazole solution three times daily; systemic medication was continued unchanged. Pain improved (NRS 9 after 24 hours) without local or systemic adverse effects. Patient was discharged after seven days with improved pain control (NRS 2); ATC analgesia remained unchanged.

Case 4

TE was a 56-year-old man with lung cancer and skin metastases. He presented with a painful malignant lesion (NRS 8) on the right arm. ATC medication included modified release morphine 30 mg twice daily for background pain arising from her primary disease and cutaneous lesion, and normal release morphine 10 mg for breakthrough pain arising from the ulcer, which he required up to four times daily. An increase in both ATC and rescue medication produced little improvement in analgesia and was associated with nausea. ATC morphine was returned to the previous dose and morphine sulphate 10 mg in intrasite gel 8 g was applied topically to the ulcer and the dressing changed daily. In the next 48 hours the dose was increased to 15 mg and then to 20 mg after a further 24 hours, which produced a marked improvement in pain (NRS 2). His ATC systemic morphine remained unchanged and he rarely made use of rescue medication. The patient was discharged home to the care of his district nurses and he continued on the same dose of topically applied morphine for several months until his death.

DISCUSSION

There has been an increasing interest in the use of topically applied opioids; however, this is not a new subject. In 1774, Heberden noted “patients with hemorrhoids should apply a mixture of a dram of the softened extract of opium for pain so excessive as to require immediate relief.” He speculated that opium worked topically since there were very few central nervous effects. In 1885, Wood wrote that morphine elicited analgesia when administered topically to painful site in peripheral tissues. With the increase in research activity in this area, particularly in animal models, it has been suggested that topically applied opioids not only provide relief from pain but also have anti-inflammatory effects and can promote wound healing. The possible clinical application is important as the impact of malignant and nonmalignant ulcers in clinical care is significant. The effect on quality of life and the cost of hospital care of pressure ulcers, for example, is well recognized and has been described in both the US and UK settings.

The literature describing the analgesic effect of topically applied opioids is growing (Table 1). As with intraarticular opioids, the effective dose of topical opioids appears to be relatively low, and in most cases the starting dose appears to be effective with titration only necessary in a few studies. The four patients we describe reported successful analgesia despite a wide range of systemic ATC opioid dose, and analgesia was reported by some to occur almost immediately and by most within a few hours. The starting dose of morphine was the same for all patients regardless of the ulcer and the systemic ATC therapy; in one case, the dose required upward titration. The resulting analgesia ranged from partial to complete and the cases illustrate that the duration may be variable, but usually longer than seen with the corresponding opioid delivered systemically; some reports have described analgesia lasting for up to two days. In some studies the efficacy of topically applied opioids allowed a reduction in systemically administered opioids; furthermore, fewer doses of rescue medication rescue (as seen in case 4) further reduce the opioid burden and the consequent likelihood of adverse effects.

There is no universally accepted dosing schedule for topically applied opioids; in many cases, the opioid is applied according to the scheduling of the dressing change, the latter based on what has deemed to be appropriate for the wound. Some units give a trial dose of opioid, wait for pain to recur, and deliver future doses according to the length of pain relief seen with the trial dose. In the four cases described, two dosing schedules were described that varied according to the usual practice of our respective units and both proved to be effective. In case 4 where the patient required titration it may have been appropriate to reduce the dosing interval but, as pain was not controlled throughout the 24-hour period, rather than loss of control toward the end of the dosing schedule, an increase of dose rather than reduction of interval was considered and proved effective.
Table 1. Selected studies reporting the use of topically applied opioids for local pain control

<table>
<thead>
<tr>
<th>Author</th>
<th>Study type</th>
<th>Number</th>
<th>Opioid</th>
<th>Indication</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back and Finley</td>
<td>Case reports</td>
<td>3</td>
<td>Diamorphine 10 mg in intrasite gel applied daily</td>
<td>Painful malignant and nonmalignant skin ulceration</td>
<td>All patients reported less pain with topical opioid</td>
</tr>
<tr>
<td>Duckett et al.</td>
<td>Case series</td>
<td>52</td>
<td>Three doses 0.05, 0.375, 0.5 mg/mL morphine infused into bladder</td>
<td>Post-op bladder irritation in children</td>
<td>Higher doses helpful in the first 48 h postoperative</td>
</tr>
<tr>
<td>Krajnik and Zylicz</td>
<td>Case report</td>
<td>1</td>
<td>0.08 percent morphine in hydrogel (approx 3.2 mg of morphine applied in 4 g of gel) applied daily</td>
<td>Cutaneous non-Hodgkin’s lymphoma</td>
<td>Effective local analgesia</td>
</tr>
<tr>
<td>Krajnik et al.</td>
<td>Case reports</td>
<td>6</td>
<td>0.1 percent morphine gel (five patients) or 10 mg diamorphine in intrasite gel (one patient) applied twice or three times daily</td>
<td>Cutaneous lymphoma, malignant ulcer, oral mucositis, nonmalignant ulcer</td>
<td>All reported beneficial analgesia that was long-lasting</td>
</tr>
<tr>
<td>Twillman et al.</td>
<td>Case reports</td>
<td>9</td>
<td>0.1 percent morphine in intrasite gel (approx 1 mg morphine/1 mL intrasite gel) applied twice daily or as required</td>
<td>Pyoderma gangrenosum, sacral sore, malignant ulcer, diabetic ulcer, hydradenitis suppurativa, melanoma, swollen inflamed skin</td>
<td>All but one patient reported significant pain relief</td>
</tr>
<tr>
<td>Flock et al.</td>
<td>Case report</td>
<td>1</td>
<td>1 mg diamorpine/1 mL metronidazole gel (0.75 percent) applied for 48 h</td>
<td>Painful infected leg ulcer</td>
<td>Effective analgesia and ulcer healing</td>
</tr>
<tr>
<td>Paul</td>
<td>Conference abstract</td>
<td>4</td>
<td>Fentanyl citrate 25 mg or 50 mg in KY jelly, metronidazole gel, or aquacell dressing applied daily</td>
<td>Painful malignant and nonmalignant ulcers</td>
<td>Effective analgesia, no adverse effects, less use of rescue analgesia</td>
</tr>
<tr>
<td>Long et al.</td>
<td>Randomized</td>
<td>4</td>
<td>Morphone infused silver-sulfadiazine cream</td>
<td>Burns</td>
<td>Patients using topical morphine has lower pain scores</td>
</tr>
<tr>
<td>Ballas</td>
<td>Case report</td>
<td>2</td>
<td>5 mg oxycodone in 2 mL water (one patient) and 100 mg meperidine (pethidine) dissolved in water and applied with xylocaine (one patient)</td>
<td>Sickle cell leg ulcers</td>
<td>Effective almost immediate analgesia</td>
</tr>
<tr>
<td>Cerchietti et al.</td>
<td>Randomized</td>
<td>26</td>
<td>15 mL 2 percent morphine mouthwash six times daily</td>
<td>Painful chemotherapy-associated stomatitis</td>
<td>Pain intensity lower in morphine group</td>
</tr>
<tr>
<td>Cerchietti et al.</td>
<td>Randomized</td>
<td>10</td>
<td>15 mL of either 1 percent or 2 percent morphine mouthwash every two to three h</td>
<td>Painful chemotherapy-associated stomatitis</td>
<td>Both preparation effective, 2 percent produced more relief than 1 percent</td>
</tr>
<tr>
<td>Cerchietti et al.</td>
<td>Randomized</td>
<td>22</td>
<td>15 mL of 2 percent morphine mouthwash every two to three h</td>
<td>Painful chemotherapy-associated stomatitis</td>
<td>Pain reduction with few local adverse effects</td>
</tr>
</tbody>
</table>
Table 1. Selected studies reporting the use of topically applied opioids for local pain control (continued)

<table>
<thead>
<tr>
<th>Author</th>
<th>Study type</th>
<th>Number</th>
<th>Opioid</th>
<th>Indication</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gilakowska-Rysz et al.21</td>
<td>Conference abstract</td>
<td>32</td>
<td>Comparison of morphine sulphate hydrogel and morphine sulphate ointment</td>
<td>Malignant infiltration with intact skin, nonmalignant ulcers, post-herpes zoster pain</td>
<td>Both preparations were equally efficacious</td>
</tr>
<tr>
<td>Flock22</td>
<td>Randomized controlled trial</td>
<td>13</td>
<td>Diamorphine 10 mg in intrasite gel versus intrasite gel (as placebo) applied daily</td>
<td>Grade II and III pressure ulcers</td>
<td>Seven patients completed, diamorphine significantly improved pain scores</td>
</tr>
<tr>
<td>Manzami-Maggi et al.23</td>
<td>Conference abstract</td>
<td>8</td>
<td>0.3 percent morphine gel applied one to four times daily</td>
<td>Ulcerating pressure sores, arterial ulceration, ulcerating stomatitis</td>
<td>Moderate to good efficacy in three patients, no local toxicity</td>
</tr>
<tr>
<td>Zeppetella et al.24</td>
<td>Randomized controlled trial</td>
<td>5</td>
<td>Morphine 10 mg in intrasite gel applied daily</td>
<td>Painful malignant and nonmalignant skin ulceration</td>
<td>Lower pain scores with opioid compared to placebo; no local or systemic adverse effects</td>
</tr>
<tr>
<td>Abbas25</td>
<td>Case series</td>
<td>17</td>
<td>Diamorphine 5 to 10 mg in intrasite gel every 12 to 24 h</td>
<td>Pressure ulcers</td>
<td>Fall in VAS scores in 15 patients</td>
</tr>
<tr>
<td>Watterson et al.26</td>
<td>Case series</td>
<td>2</td>
<td>10 mg morphine in 15 g intrasite gel</td>
<td>Epidermolysis bullosa</td>
<td>Reduction in pain scores</td>
</tr>
<tr>
<td>Ashfield27</td>
<td>Case study</td>
<td>1</td>
<td>10 mg diamorphine in 8 g intrasite gel applied daily</td>
<td>Pressure ulcer</td>
<td>Effective analgesia</td>
</tr>
<tr>
<td>Gairard-Dory et al.28</td>
<td>Case series</td>
<td>3</td>
<td>2 to 10 mL 0.1 percent morphine sulphate in carboxymethylcellulose given five to 60 min before eating</td>
<td>Chemotherapy induced oesophagitis</td>
<td>All patients reported effective analgesia</td>
</tr>
<tr>
<td>Gallagher et al.29</td>
<td>Case series</td>
<td>4</td>
<td>100 mg methadone plus 10 g stomahesive powder applied daily</td>
<td>Malignant and nonmalignant ulcers</td>
<td>three patients in favor of morphine</td>
</tr>
<tr>
<td>Platzer et al.30</td>
<td>Case series</td>
<td>6</td>
<td>0.1 percent morphine</td>
<td>Inflammatory skin pain</td>
<td>VAS scores fell in all cases</td>
</tr>
<tr>
<td>Porzio et al.31</td>
<td>Case series</td>
<td>5</td>
<td>10 mg morphine in 8 g intrasite gel applied three times daily</td>
<td>Malignant and pressure ulcers</td>
<td>All patients reported reduced NRS scores</td>
</tr>
<tr>
<td>Varnassiere et al.32</td>
<td>Randomized controlled trial</td>
<td>18</td>
<td>Morphine 10 mg in intrasite gel applied daily</td>
<td>Chronic skin ulcers</td>
<td>No benefit if patient on systemic opioid</td>
</tr>
<tr>
<td>Zeppetella and Ribeiro33</td>
<td>Randomized controlled trial</td>
<td>21</td>
<td>Morphine 10 mg in intrasite gel applied daily</td>
<td>Malignant and nonmalignant ulcers</td>
<td>16 patients completed, morphine treatment reduced numerical rating scores</td>
</tr>
<tr>
<td>Tran and Fancher34</td>
<td>Case study</td>
<td>1</td>
<td>10 mg morphine sulphate in 8 g of a neutral water based gel applied</td>
<td>Mycosis Fungoides</td>
<td>Effective analgesia</td>
</tr>
<tr>
<td>Scott Groen</td>
<td>Personal communication</td>
<td></td>
<td>1 mL hydromorphone 1 mg/mL 2 mL propylene glycol, 7 mL 0.9 percent sodium chloride</td>
<td>Tache Pharmacy Winnipeg, Canada</td>
<td></td>
</tr>
</tbody>
</table>
There have been a few studies that have reported on the bioavailability of topically applied opioids. A study in volunteers who had morphine applied to de-epithelialized skin showed that 75 percent of the dose applied topically became bioavailable, suggesting that a systemic opioid effect is possible. Other studies have reported that systemic absorption is not significant, suggesting that the action could be local; this is supported by the observations and the literature on the lack of reported systemic adverse effects and that topical administration appears to be efficacious across a wide range of systematically administered opioid doses. Topically applied opioids may, however, still have the potential to produce local adverse effects, either through the drug or the carrier. Few local adverse effects have been described in the literature and none were reported by either patients or nursing staff in the cases described, suggesting that this is a safe method of administering opioids. Although generally well tolerated, and frequently used in the literature, intrasite gel may not be appropriate for all ulcers. Glycol, metronidazole, and KY jelly have also been used as carriers, while others have sprayed the opioid directly on to the wound.

Among the limitations in this report is the potential to distinguish between an analgesic effect resulting from the cleansing agents and that arising from the topically applied opioid. There are small studies to suggest that topical opioid plus intrasite is more effective than intrasite alone; however, this finding requires further confirmation. The issue of infection is also important and there are reports showing that local infection can be a cause of severe pain and this responds well to antibiotics; in our cases the patients’ ulcers were not infected.

Malignant and nonmalignant ulcers are a heterogeneous clinical problem; it is unlikely, therefore, that topical opioids would be the only solution. Preventative measures such as addressing mobility, nutrition, and skin health are desirable, as prevention is easier and less expensive than cure, although there is a lack of evidence in the literature to support this. Although patients with advanced disease may present with pressure ulcers, malignant cutaneous lesions can also occur. With malignant ulcers, healing is unlikely, so the goal of care shifts to wound management, palliation, and comfort; topically applied opioids in all four cases appear to have played a positive role in relief of pain and in practice are used alongside preventative physical measures.

The evidence to date is encouraging and suggests that topical opioid application could be a useful option in the management of painful skin ulcers. However, the studies to date have varied in study population, type of ulcer, opioid, carrier, and pain measurement; hence, there are many questions to be answered before this administration route can become routine medical practice. It is currently unknown, for example, which opioids are best suited to topical administration. Several have been used with success, morphine being the most common; the rationale for using diamorphine is debatable as it is generally considered to be a pro-drug, which in vivo is rapidly hydrolyzed by plasma cholinesterases and other blood and tissue esterases to active metabolites. The effective dose of opioid also requires clarification as in most studies an arbitrary dose of opioid was chosen. Perhaps, given the heterogeneity of malignant and nonmalignant ulcers, the dose may in fact vary between patients and dose titration in a way similar to the management of breakthrough pain, which may be a safer and effective management strategy. The heterogeneity of malignant and nonmalignant ulcers may also influence the ideal opioid preparation; liquids, powder, or gel preparations may all be indicated and the choice is based on the wound characteristics, opioid stability, locally availability, and cost. The optimal frequency of administration is also unknown; strategies such as measuring the time to rescue medication following the application of opioid may be helpful in individualizing the frequency. It is possible that the frequency of dressing change and opioid administration may be different and alternative analgesic options will have to be considered. If these questions are to be addressed further, adequately powered placebo-controlled efficacy, titration, and safety studies are required.

REFERENCES

8. US Office of Disease Prevention and Promotion: *Healthy
ABSTRACT

This article describes a case of severe opioid-induced pruritus following systemic morphine administration. Symptoms did not resolve after administration of antihistamines or rotation to fentanyl or hydromorphone, but oral oxycodone and small-dose intravenous naloxone did alleviate the patient’s itching. The pathogenesis of opioid-induced pruritus and the rationale for opioid rotation are briefly discussed. Current and possible future therapeutic options are mentioned.

Key words: pruritus, systemic opioids, opioid rotation

INTRODUCTION

Generalized itch (pruritus) is an uncommon side effect of systemic opioid use, but it occurs frequently in conjunction with preoperative epidural or intrathecal opioid administration. Occurrence and severity depend on the type of opioid used and individual tolerance. The mechanism underlying the pruritogenic effect of systemic opioids is still not completely understood. The high incidence of pruritus seen with intraspinal administration of opioids suggests that spinal opioid receptors may be involved. Recently, opioids have been shown to induce itching via specific binding to opioid receptors in the central and peripheral nervous system, mimicking the physiological effects of endorphins and enkephalins. The relationship between itching and pain is bidirectional. Itching can be reduced by painful stimuli, and, vice versa, analgesia may reduce this inhibition and thus enhance the itch. This phenomenon is particularly relevant to spinally administered opioid receptor agonists, which induce segmental analgesia and segmental pruritus. Because the perception of itching is modified by endogenous opioids via central receptors, it seems logical that opioid antagonists such as naloxone would demonstrate a high capacity to suppress pruritus induced by systemic opioid use. In this case study we report the occurrence of severe itching after intravenous morphine administration in an opioid-tolerant patient. Pruritus was resolved by changing the opioid and route of administration and by adding a small dose of intravenous naloxone.

CASE REPORT

A 15-year-old nonatopic male with desmoplastic small round cell tumor of the pelvis (postresection), who was undergoing chemotherapy (vincristine) and radiation therapy and had developed secondary acute myelogenous leukemia and neutropenic fever, was seen in consultation for mucositis pain. The reported “burning” pain involved the entire oral cavity, radiating down to the epigastric area. At that time, he was experiencing significant side effects from prior opioid use (nausea, vomiting, itching). Physical exam was remarkable for grade II mucositis. The patient was flushed in the face and scalp but had no urticaria lesions.

Upon admission, the patient was started on hydromorphone (Dilaudid) 0.4 mg every four hours; this dose was titrated rapidly up to 0.8 mg intravenously every four hours as needed. Because of resultant nausea, vomiting, and suboptimal analgesia, hydromorphone was changed to morphine sulfate 5 mg intravenously every three hours. With the first dose of morphine, the patient displayed onset of severe pruritus accompanied by urinary retention. Although his pain was better controlled after several subsequent doses, the itching was severe enough that it made him unwilling to continue taking morphine. Diphenhydramine 50 mg every six hours and hydroxyzine 50 mg every four hours were used as needed, without any noticeable improvement. Skin exam remained unremarkable, with some flushing without erythema, rash, dermatitis, or urticaria. Routine laboratory studies were also unremarkable; no eosinophilia was noted. Morphine was changed empirically to a continuous intravenous
infusion of fentanyl, administered as patient-controlled analgesia (PCA) at a basal rate of 50 μg/h. Titration of the dose up to 70 μg/h resulted in good pain control but made no difference with regard to the patient’s itching. Over the next 12 hours, fentanyl was discontinued, and hydromorphone was restarted at 0.8 mg/h basal rate and 0.8 mg demand dose every 10 minutes. An average of 5 mg/h of additional hydromorphone was delivered via demand doses. The patient reported significant worsening of pruritus with every self-administered demand dose. After the pain management team was consulted, the patient was started on oxycodone oral elixir 45 mg every three hours as needed, and a continuous intravenous infusion of naloxone at 0.25 μg/kg/h was added. The hydromorphone PCA remained available to be used for demand doses of 1 mg every hour if the patient lost the capacity to swallow. During the next 24 hours, the patient used an average of 0.4 mg/h of hydromorphone as demand doses, with optimal pain control and no recurrence of itching. Until the patient’s white blood cell count recovered and subsequent resolution of mucositis was seen, pain management continued, with oxycodone oral solution titrated up to 60 mg every three hours and hydromorphone intravenously as needed. Naloxone infusion was tapered and discontinued after seven days. After naloxone was discontinued, there was no further itching, and no other opioid-related side effects were observed.

DISCUSSION

Opioid medications effectively treat pain, but they are associated with unwanted adverse effects, including nausea, vomiting, and pruritus. Pruritus can be severely distressing and as disabling as severe pain, and it may limit the acceptance of opioid therapy by both patients and caregivers.

Neurophysiologically, pruritogenic substances stimulate a subset of specialized skin C-fibers and initiate an itch sensation. These fibers are distinct from the polymodal C-type neurons, which transmit nociceptive (i.e., painful) stimuli to the central nervous system. Many endogenous substances are regarded as “mediators of itch,” such as amines (e.g., histamine), proteases, opioids, lipid peroxidation metabolites (e.g., leukotrienes, prostaglandins), neuropeptides (e.g., substance P), cytokines, growth factors (e.g., nerve growth factor), and many others. These agents may either directly sensitize the itch-mediating sensory nerve endings to various neuropeptides (such as substance P) or act on mast cells in the skin, leading to subsequent release of itch mediators, among which histamine functions as a key player. Therefore, the bidirectional sensory neuron–mast cell interaction seems to be at the core of those processes that give rise to the onset of pruritus.

During the past 20 years, three opioid receptors—μ, δ, and κ—have been identified, and the genes coding for these receptors have been cloned. The opioid receptors are transmembrane domain receptors linked to G proteins. The binding of opioids to these receptors initiates a cascade of events, culminating with protein phosphorylation and diverse physiological responses. Opioids are thought to produce their analgesic effect via agonist binding to Gi/Go-receptor-coupled complexes. These receptors inhibit the electrical firing of neurons and therefore block the perception of pain or the relay of pain signals from pain receptors. Opioids may also bind—at very small doses (pico- or nanomolar concentrations)—to Gi-coupled receptors. This connection activates an excitatory pathway that might explain the hyperalgesia occasionally reported with opioid administration, as well as some opioid-induced side effects such as pruritus, nausea, and vomiting.

Recent animal studies have shown that histamine does not seem to be a player in mechanisms of opioid-induced itching and add further support to the idea that antihistamines are not effective in treating opioid-induced pruritus. Most clinically used opioid analgesics are selective for the μ receptor, and this is the target receptor for morphine and other commonly used opioids, including oxycodone, hydromorphone, methadone, and fentanyl. In addition, oxycodone, methadone, and buprenorphine may have clinically important activity at other opioid receptors.

Systemic administration of naloxone is a very potent and effective means of preventing or reversing itching invoked by agonists. Opioid receptor antagonists can be expected to effectively combat itch when it is invoked by μ opioid receptor analgesics or mediated by endogenous opioid peptides. The dose-response curve for opioid-induced itching appears to be bell shaped, similar to the progression of nausea and vomiting caused by the same medications. It is also worth noting that opioid receptor antagonists produce parallel rightward shifts in the dose-response curves of morphine-induced scratching. These observations indicate that the antipruritic effects of naltrazone and nalmefene are derived at opiate receptors through a competitive and reversible antagonist action. In contrast, in animal studies, κ agonists such as U-50488H produce downward shifts in the dose-response curve of morphine-induced scratching, and a selective antagonist can reverse their antipruritic actions. The new synthetic κ receptor agonist TRK-820 was used to reduce itching and scratching in a mouse model, and its results seemed promising for possible translation into a
therapy for humans. These observations indicate that agonists do not produce antagonism but rather inhibit receptor-mediated itch through activation.

In our case, the use of intravenous morphine sulfate, a commonly used full μ receptor agonist, initiated the itching, which did not improve when morphine was changed to hydromorphone or fentanyl, μ1 and μ2 receptor agonists. When oral oxycodone was started in conjunction with intravenous naloxone, the itching improved significantly and resolved over the next 24 hours. Even after naloxone was discontinued, itching did not recur. Oxycodone is a semisynthetic opioid, derived from thebaine; it is classified as a pure opioid with a high affinity for μ receptors, greater than to κ receptors. Despite a 10- to 40-fold lower affinity for the μ opioid receptor, oral oxycodone has nevertheless been found to produce pain relief that is generally comparable to that afforded by oral morphine. It has great bioavailability (60 percent), with roughly double the potency of and fewer adverse effects than morphine. It has been recently proven, in both animal and human studies, that oxycodone analgesia is governed by the parent drug, with a negligible contribution from its circulating oxidative and reductive metabolites.

CONCLUSIONS

A patient’s response to a medication depends on multiple considerations: pharmacokinetics, pharmacodynamics, and environmental and genetic factors. Opioid rotation helps some patients achieve better pain control with fewer associated adverse effects. The pharmacological mechanisms underlying this phenomenon involve the diverse and combined effects of agonist binding to opioid receptors (μ, δ, κ); incomplete cross-tolerance; the diverse genetic background of patients, including allelic variations in the opioid receptors themselves; and differences in drug-clearance mechanisms.

In the case described above, the resolution of the patient’s pruritus seemed to be the result of two different, combined interventions. Oxycodone might have reestablished a balance between μ and κ opioid receptors, most likely through a predominantly κ1 agonistic effect, while naloxone provided an additional antipruritic effect through its action as a μ antagonist, with no reversal of analgesia at the small dose used. We are inclined to believe that even though the two interventions coincided, naloxone did not play a singular role, since itching did not recur after its discontinuation.

Data from prospective studies indicate that chronic itch is observed in 2 to 10 percent of patients receiving oral morphine for chronic cancer pain. To date, the neurobiological mechanisms of the interaction between μ and κ opioid receptors in itch-selective neurons remain unclear. Recent studies in monkeys reinforce the idea that the μ opioid receptor—not histamine or the κ or δ receptor—mediates itching invoked by opioid analgesics. It is possible that activation of κ receptors in specific sensory neurons produces the antipruritic effect. Current recommendations for the treatment of opioid-induced pruritus are empiric and anecdotal, as there are no prospective studies to support them. In general, treatment is based on the postulated mechanisms of action. Discontinuation of the offending drug, rotation to another opioid, and prevention/treatment with an opioid antagonist are all proposed management strategies. Therefore, it is pivotal to verify whether κ agonists have a broader application as antipruritics in humans. Future studies are required to establish different pruritus models and to investigate the types of κ agonists that are effective against itching invoked by pruritogenic agents other than opioids. These studies will make a substantial contribution to the in vivo pharmacology of pruritus and offer functional evidence of κ agonists’ potential as a new generation of antipruritics.

REFERENCES

INTRODUCING

Journal of Opioid Management™
A medical journal for proper and adequate use

Addresses all aspects of opioid use
- Federal spotlight on opioid abuse and addiction
- Pain management and opioids
- Pain control in end-of-life care using opioids
- Seven sins that physicians commit when prescribing opioids
- Legal issues and ongoing regulatory environment
- Adverse effects and cognitive function among primary care patients taking opioids for chronic pain
- Patient profiles and interaction with opioids
- Dosages and types of opioids, routes and intervals
- Management of opioid-tolerant chronic pain patients

Now indexed in Index Medicus and guided by the expertise of leaders in the field worldwide, Journal of Opioid Management is the only peer-reviewed periodical available today that covers all aspects of opioid use and safe management. Shouldn’t the unchallenged journal of record for opioid management have a place in your professional library?

NOTE! The current FDA and DEA focus on curbing opioid abuse makes this journal a must read for all healthcare providers including primary care and palliative care physicians, oncologists, pharmacists, hospices and palliation centers. Because there are legal ramifications, each issue includes the perspectives of both defense and prosecuting attorneys as they examine all aspects of these important considerations.

S U B S C R I B E T O D A Y

Please start my subscription to the Journal of Opioid Management — ISSN 1551-7489

Individual: US subscribers $1 yr.–$298US Canadian subscribers $1 yr.–$323US Foreign subscribers $1 yr.–$363US
Institution: US subscribers $1 yr.–$398US Canadian subscribers $1 yr.–$423US Foreign subscribers $1 yr.–$463US
Library: US subscribers $1 yr.–$475US Canadian subscribers $1 yr.–$479US Foreign subscribers $1 yr.–$483US

☐ Check enclosed
☐ MasterCard ☐ Visa ☐ Discover ☐ AMEX

Card No.
Exp. Date
Name on credit card
Address on credit card
X
Signature required

For faster service call our subscription department at 800-743-7206 x108, fax this form to 781-899-4900 or mail this form to: Journal of Opioid Management, 470 Boston Post Road, Weston, MA 02493

Fed Tax ID # 20 882 8337

12882 06/26/07 Rev. A
Editorial Policy

The mission of the Journal of Opioid Management is to educate and promote, through scientifically rigorous research, the adequate and safe use of opioids in the treatment of pain as well as the legal and regulatory issues surrounding abuse, addiction, and prescription practices (both over- and under-prescribing). Original articles, case studies, literature reviews, editorials, and letters to the editor concerning all aspects of opioid management will be considered for publication. All submissions, excluding editorials and letters to the editor, are subject to peer review by the editorial board prior to acceptance.

Manuscript Submission

To submit a manuscript, please go to http://jom.allentrack2.net. Click on “New users should register for a new account.” After you register you will be able to click on a link to submit a manuscript, this will forward you to a page with instructions.

Manuscript Format

Please be sure to turn OFF the track changes feature on all documents before submission. The cover page should indicate the article’s title, the full name, highest pertinent academic degrees, institutional affiliations, and current address of each author, contact information for the author handling all correspondence, telephone number, fax number, and, if the manuscript was orally presented at a meeting, the name of the organization, place, and date it was read. The first use of an uncommon abbreviation should be preceded by the full name. Brief definitions of key terms may be appended to the manuscript and can be presented in parentheses after the term within the article. With the exception of forum articles, book reviews, or letters to the editor, manuscripts should include the following five sections: Abstract, Introduction, Methods, Results, and Discussion. Subheads should be inserted at suitable levels. Style should conform to “Uniform Requirements for Manuscripts Submitted to Biomedical Journals” (available online at http://www.icmje.org).

Figures & Tables

The Journal welcomes illustrations, charts, and photographs to accompany articles. Figures should be titled and numbered consecutively according to the citation in the text. Information presented in figures and tables should be explained in the text. If data have been published previously, an appropriate reference should be included.

Short, descriptive legends should be provided on a separate page. Legends for figures previously published should include a complete reference to the original publication, with the copyright designation. Copies of the publisher’s and author’s permission to use the figure must be provided. Photographs should include legends and should be numbered consecutively according to the citation in the text and labeled on the back. Tables, photos, and figures must be submitted in the following formats: TIFF, JPEG, or EPS.

Manuscript review

Manuscripts are received with the understanding that they are submitted solely to Journal of Opioid Management and that, apart from abstracts, none of the material contained in the manuscript has been published previously or is under consideration for publication elsewhere. Authors should secure all necessary clearances and approvals prior to submission.

Journal of Opioid Management is a refereed journal. All manuscripts are generally subject to review by at least two members of the editorial advisory board who are noted experts in the appropriate subject area. The Journal reserves the right to make editorial revisions prior to publication.

All manuscripts are acknowledged immediately, and every effort will be made to advise contributors of the status of their submissions within 60 days.

References

References are organized in AMA format; that is, they are to be cited numerically in the text and in consecutive order, including the first three authors followed by et al., and listed at the end of the article in the following format:

Journal articles—

Books—

Book chapters—

Web sites—

Ethics

Style should conform to “Uniform Requirements for Manuscripts Submitted to Biomedical Journals” prepared by the International Committee of Medical Journal Editors and published in Ann Intern Med 1997; 126: 36-47, and available on the web at http://www.acponline.org/journals/annals/01jan97/unifreqr.htm.

The Journal expects authors to disclose any commercial or financial associations that might pose a conflict of interest in connection with the submitted article. All funding sources supporting the work should be acknowledged on the title page.

Manuscripts and all correspondence regarding them should be addressed to the Managing Editor, Journal of Opioid Management, 470 Boston Post Road, Weston, MA 02493.
Optimize onset with FENTORA

For the sudden strike of breakthrough pain (BTP) in patients with cancer,

FENTORA optimizes onset of relief

PHYSICIANS AND OTHER HEALTHCARE PROVIDERS MUST BECOME FAMILIAR WITH THE IMPORTANT WARNINGS IN THIS LABEL.

Serious adverse events associated with all opioids are respiratory depression (potentially leading to apnea or respiratory arrest), circulatory depression, hypotension, and shock. All patients should be followed for symptoms of respiratory depression.

Serious adverse events associated with all opioids are respiratory depression (potentially leading to apnea or respiratory arrest), circulatory depression, hypotension, and shock. All patients should be followed for symptoms of respiratory depression.

The most common (≥10%) adverse events observed in all FENTORA clinical trials were: nausea, vomiting, fatigue, headache, constipation, somnolence, anemia, dehydration, and application site abnormalities. Application site reactions tended to occur early in treatment, were self-limited, and resulted in treatment discontinuation for only 2% of patients. Most side effects were mild to moderate in severity. No attempt was made to correct for concomitant use of around-the-clock opioids or cancer-related symptoms.

For more information about FENTORA, please call Cephalon Professional Services and Medical Information at 1-800-896-5855 or visit www.fentora.com

©2007 Cephalon, Inc. All rights reserved. FENT142a Apr 2007. Printed in USA.
For patients with chronic, moderate to severe pain

True, 24-hour pain control with QD dosing helps patients get back to active living.

- Sustained 24-hour pain control day after day, week after week.
- 45% improvement in daily pain scores at end of titration.
- Consistent improvement in physical and social functioning.
- Improved quality and duration of sleep.

More Time with Friends

AVINZA® capsules are a modified-release formulation of morphine sulfate indicated for the management of moderate to severe pain requiring continuous, around-the-clock opioid therapy for an extended period of time. AVINZA® capsules are to be swallowed whole or the contents of the capsule sprinkled on applesauce. The capsule beads are not to be chewed, crushed, or divided.

Important Safety Information

AVINZA® capsules are a modified-release formulation of morphine sulfate indicated for the management of moderate to severe pain requiring continuous, around-the-clock opioid therapy for an extended period of time. AVINZA® capsules are to be swallowed whole or the contents of the capsule sprinkled on applesauce. The capsule beads are not to be chewed, crushed, or divided.

AVINZA® is contraindicated in patients with known hypersensitivity to morphine, morphine salts, or any component of the product. AVINZA®, like all opioids, is contraindicated in patients with known or suspected respiratory depression in the absence of resuscitative equipment and in patients with acute or severe bronchial asthma.

AVINZA® should be administered cautiously in patients with known hepatic dysfunction, and in the absence of appropriate resuscitative equipment.

AVINZA® is contraindicated in patients with known hypersensitivity to morphine, morphine salts, or any component of the product. AVINZA®, like all opioids, is contraindicated in patients with known or suspected respiratory depression in the absence of resuscitative equipment and in patients with acute or severe bronchial asthma.

AVINZA®, like all opioids, is contraindicated in any patient who has or is suspected of having jaundiced stools. Morphine should be used with caution in patients with chronic obstructive pulmonary disease or cor pulmonale and in patients having a substantially decreased hepatic or renal function, severe histoplasmosis, hepatitis, hypothyroidism, or pre-existing respiratory insufficiency. In such patients, even small therapeutic doses of morphine may increase the nonrespiratory and respiratory depressant effects of the parent drug. AVINZA® is NOT intended for use as a proanalgesic. The safety and efficacy of using AVINZA® in the postoperative setting has not been established. AVINZA® is not indicated for postoperative use. If the patient has been receiving the drug prior to surgery, the pre-operative dose may be appropriate once the patient is able to take his drug by mouth.

Physicians should individualize treatment, moving from parenteral to oral analgesics as appropriate. See American Pain Society guidelines. Morphine sulfate is a Schedule II controlled substance. It can be abused in a manner similar to other illegal or illegal opioids.

AVINZA® should be administered cautiously and in reduced dosages in patients with severe renal or hepatic insufficiency, Addison’s disease, hypothyroidism, porphyria cutanea tarda, and in elderly or debilitated patients.

Patients must not consume alcoholic beverages while on AVINZA® therapy. Additionally, patients must not use prescription or nonprescription medications containing alcohol while on AVINZA® therapy. Consumption of alcohol while taking AVINZA® may result in the rapid release and absorption of a potentially fatal dose of morphine.

The daily dose of AVINZA® must be limited to a maximum of 1600 mg/day. AVINZA® doses over 1600 mg/day contain a quantity of tartrazine that has not been demonstrated to be safe, and which may result in serious renal toxicity (see WARNINGS).

The 60-, 90-, and 120-mg capsules are for use only in opioid-tolerant patients.

For additional Important Safety Information, please see brief summary of full Prescribing Information on adjacent page. For questions regarding AVINZA®, please call the AVINZA® Information Service at 1-888-8-AVINZA or visit us on the web at www.avinza.com.

CASE STUDIES

Opioids applied topically to painful cutaneous malignant ulcers in a palliative care setting.

Giovambattista Zeppetella, FRCP

Giampiero Porzio, MD

Federica Aielli, MD

GUEST EDITORIAL

Fentanyl: Are we paying too high a price?

Dana Tarcatu, MD

Mohammed Sami Walid, MD, PhD

Leon Hyer, PhD

Mohammed Ajjan, MD

Aaron C. M. Barth

Eric Groves, MD, PhD

Tad Iwan, BA

Lisa Greenberg Schlosser, MS

Zofia Dziewanowska, MD, PhD

Andres Negro-Vilar, MD, PhD

ORIGINAL ARTICLES

Prevalence of opioid dependence in spine surgery patients and correlation with length of stay.

Mohammad Sams Waldi, MD, PhD

Leon Hyer, PhD

Mohammed Ajjan, MD

Aaron C. M. Barth

Joe Sam Robinson, Jr., MD

Oral naltrexone to enhance analgesia in patients receiving continuous intrathecal morphine for chronic pain: A randomized, double-blind, prospective pilot study.

Scott Hata, MD

Paul Sloan, MD

Sleep improves when patients with chronic OA receive AVINZA®.

Fentanyl: Are we paying too high a price?

Dana Tarcatu, MD

Mohammed Sami Walid, MD, PhD

Leon Hyer, PhD

Mohammed Ajjan, MD

Aaron C. M. Barth

Eric Groves, MD, PhD

Tad Iwan, BA

Lisa Greenberg Schlosser, MS

Zofia Dziewanowska, MD, PhD

Andres Negro-Vilar, MD, PhD

CONTENTS

- Analgesic effects of lornoxicam after total abdominal hysterectomy.

- OCD symptoms improve with transcranial magnetic stimulation.

- Opioids applied topically to painful cutaneous malignant ulcers in a palliative care setting.

- Case Studies: Opioids applied topically to painful cutaneous malignant ulcers in a palliative care setting.

- Original Articles: Fentanyl: Are we paying too high a price?

- Case Studies: Opioids applied topically to painful cutaneous malignant ulcers in a palliative care setting.