Loperamide is a piperidine derivative opioid ligand that selectively activates peripheral opioid receptors without entering the CNS. Loperamide is commonly used as an antidiarrheal agent to treat nonbacterial diarrhea (resulting from gastroenteritis or inflammatory bowel disease). It acts on the μ-opioid receptors in the myenteric plexus of the large intestine and inhibits peristalsis of intestinal muscles and reduces gastroduodenal reflex.1 In the last 10 years, experiments involving animal models of pain report loperamide analgesia after systemic2-5 or intraspinal administration.6-10 In the clinical setting, oral route of drug administration is highly desirable. To eventually reach opioid receptors in peripheral tissues, orally administered loperamide must first permeate the intestinal epithelium and enter the blood stream. However, its low absorbance rate from the gut prevents the same. Similarly, it does not cross the blood-brain barrier and even if does cross this barrier, it is immediately pumped out by P-glycoprotein into non-central nervous system (CNS) circulation.11 Loperamide produces antinociception after systemic and intraspinal administration.2-10 In the experiments involving animal as a model of acute pain, loperamide is preferentially administered through systemic route. It does not cross the blood brain barrier; therefore, systemic administration does not produce pleasurable side effects like euphoria, which can lead to addiction. Thus, loperamide appears as one of the choice as opioids. However, its analgesic potential needs to be further examined. Loperamide could produce mild physical dependence during preclinical studies, specifically in mice, rats, and rhesus monkeys after systemic administration.12,13 Also, the systemic administration requires higher dose, which can invite adverse drug reactions (ADRs). ADRs associated with loperamide include abdominal pain and bloating, nausea, vomiting, and constipation.14 Furthermore, loperamide may produce rare side effects like paralytic ileus, dizziness, and rashes. Similar effects, if any, after intraspinal administration needs future attention.

The use of regional analgesic technique is associated with lower pain scores than are seen with systemic opioids. Intrathecal drug administration is one such technique where drug is delivered into subarachnoid space, close to the spinal cord. The advantage of intraspinal administration of a drug is to obtain maximum effect with even little quantity of drug.15 Many studies document the antinociceptive action of loperamide after intraspinal administration.6-10 Also, studies have shown that a single intrathecal injection of loperamide produced a higher analgesic effect than an equal amount of morphine.8-10 When administered directly into the CNS, being a lipophilic substance,16 loperamide would rapidly infiltrate the neighboring nervous...
tissue at the site of injection with limited spread of
the drug to cranial and caudal levels, which is
responsible for the occurrence of side effects like
respiratory depression and urinary retention. Loper-
amide analgesia after intraspinal administration has
primarily been observed in animal models of acute
pain; however, its potency in chronic pain condi-
tions remains to be examined.

REFERENCES

1. Niemegeers CJE, Lenaerts FM, Janssen PAJ: Loperamide, a
novel type of antidiarrheal agent. Drug Res. 1974; 24: 1633-
1653.

with peripheral selectivity. J Pharmacol Exp Tber. 1999; 289:
494-502.

eramide on mechanical allodynia induced by herpes simplex

mu-opioid receptor agonist attenuates neuropathic pain in rats

5. Ringkamp M, Tal M, Hartke TV, et al.: Local loperamide injec-
tion reduces mechanosensitivity of rat cutaneous, nociceptive

action of loperamide, an opioid agonist, and its blocking action
on voltage-dependent Ca2+ channels. Neurosci Res. 2003; 46:
493-497.

7. Shannon HE, Lutz EA: Comparison of the peripheral and cen-
tral effects of the opioid agonists loperamide and morphine in

8. Ray SB, Verma D, Wadhwa S: Acute analgesic effect of lop-
eramide as compared to morphine after intrathecal administra-

9. Ray SB, Yaksh TL: Spinal antinociceptive action of lop-
eramide is mediated by opioid receptors in the formalin test in

10. Kumar R, Reeta KH, Ray SB: Antinociceptive effect of
intrathecal loperamide: Role of mu-opioid receptor and calcium

sensitivity to inhibition of P-glycoprotein located in lympho-
cytes, testes, and the blood-brain barrier. J Pharmacol Exp Tber.
2006; 317: 1012-1018.

12. Yanagita T, Miyasato K, Sato J: Dependence potential of lop-
eramide studied in rhesus monkeys. NIDA Res Monogr. 1979;

Dependence on Loperamide Hydrochloride in Mice and Rats


15. Rathmell JP, Lair TR, Nauman B: The role of intrathecal
drugs in the treatment of acute pain. Anesth Analg. 2005; 101:
S30-S45.

16. Dalwadi G, Sunderland B: An ion pairing approach to increase
the loading of hydrophilic and lipophilic drugs into PEGylated