
abstract

This article will review decades of science contributing to

current interest in opioid excitatory pharmacology. A long

history of clinical confusion provided the stimulus for

recent, detailed in vivo and in vitro investigations of the

neuropharmacologic mechanisms involved in analgesic

and hyperalgesic actions of opioid agonists and antago-

nists. Following the discovery of central nervous system opi-

oid excitatory-hyperalgesic processes in animals, detailed

neuronal cell culture experiments established opioid recep-

tor/G protein/adenylate cyclase neurobiochemical mecha-

nisms for bimodal inhibitory versus excitatory actions of

opioids. Once this novel model was available to explain the

cellular mechanisms responsible for the duality of opioid

actions, clinical translation of this technology began to

emerge, with a primary focus on selective antagonism of

opioid excitatory actions with concomitant low-dose opioid

antagonists. Encouraging results from recent animal and

clinical studies will be discussed as further evidence that

therapeutic pain management may be improved through

enhancement of opioid agonist analgesia by cotreatment

with ultra-low-dose opioid antagonists that selectively

attenuate opioid-mediated hyperalgesia. 
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introduction 

Opioid therapy is recommended and effective for most
patients with moderate or severe cancer pain1,2 and has
been used in recent years for analgesia in patients with
chronic nonmalignant pain. While opioids are often effec-
tive in the long-term treatment of chronic cancer and non-
malignant pain, they are not without side effects or other
limitations.3 Tolerance to opioid analgesia may occasionally
limit such medications’ usefulness in patient care. Patients
treated with opioids for chronic pain may exhibit a paradox-
ical increase in sensitivity to pain, recently described as opi-
oid-induced hyperalgesia.4 It is well recognized that there is
tremendous variability in individual patients’ analgesic

response to a given opioid,5 which may be due in part to
individual differences in terms of the balance of analgesic
versus hyperalgesic actions of opioids. 

In order to improve opioid analgesia in patients with
chronic moderate to severe pain, clinicians use several
strategies: 1) combining therapy with other analgesics
such as nonsteroidal anti-inflammatories or NMDA recep-
tor antagonists; 2) adding adjuvant analgesic agents such
as tricyclic antidepressants, anticonvulsants, oral local
anesthetics, or muscle relaxants; 3) rotating to a different
opioid; 4) changing the route of opioid administration
(for example, from oral to intravenous or spinal); 5) using
surgical or anesthetic interventional techniques; or 6)
adding nonpharmacological pain therapies such as phys-
ical therapy, massage therapy, biofeedback, and
acupuncture.3 All of the above strategies have their limi-
tations, side effects, and contraindications6-9; thus, future
pain management practice requires development and
testing of novel pharmacological approaches to achieve
optimal pain relief with minimal side effects for every
patient. Selective antagonism of opioid excitatory-hyper-
algesic actions with ultra-low-dose opioid antagonists
may represent one such novel therapeutic approach and
could enable clinical enhancement of opioid agonist
analgesic efficacy.10 Opioids are known to activate stereo -
specific opioid receptors on cell membranes in the cen-
tral nervous system (CNS).11 The exact mechanisms of
action are not fully understood, but they are known to
involve G protein–adenylate cyclase second-messenger sys-
tems. How opioid antagonists could possibly enhance the
efficacy of opioid agonist analgesia is the subject of this
review article. 

The first description of the paradoxical analgesic effect
of opioid antagonists dates back 60 years. This review
begins with discussion of early human and animal observa-
tions and how they provided historical evidence for opioid
excitatory actions that inspired the systematic and detailed
in vivo and in vitro studies of the last two decades. Literature
related to the discovery of opioid excitatory processes will
be reviewed as a prelude to the presentation of evidence for
our current understanding of the novel neuropharmacolog-
ic mechanisms of low-dose opioid antagonists responsible
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for enhancement of opioid agonist analgesia. Finally, we
will summarize the latest clinical evidence supporting use
of low-dose opioid antagonists for the treatment of periop-
erative and chronic pain. 

Historical evidence

Opioids have been used as analgesics for several mil-
lennia, their effects recognized long before opioid recep-
tors were discovered in animals and humans in the early
1970s. While the concept of opioid agonists and antago-
nists, as related to “multiple opioid receptors,”12 was not
developed until the 1970s, researchers in the 1950s were in -
vestigating medications that could antagonize all or part of
the effects of morphine. Dr. Harris Isbell, Director of the Pub -
lic Health Service Addiction Research Center (Lexington,
KY), was perhaps the first to suggest, in 1950, that the opi-
oid antagonist nalorphine had analgesic properties in
humans and could raise the pain threshold.13 In the early
1950s, Lasagna and Beecher,14 working at Massachusetts
General Hospital, strove to investigate and develop a com-
bination of opioid analgesic and opioid antagonist that
would offer the analgesia of morphine without the undesir-
able side effects. During their landmark studies, the authors
“accidentally” discovered that the opioid antagonist nalor-
phine was itself an analgesic agent.15 In an elegant double-
blind study of postoperative pain, Lasagna and Beecher14

noted that while low doses of nalorphine produced analge-
sia comparable to placebo, higher doses produced signifi-
cant postoperative pain relief (Table 1). Keats and Telford16

repeated the Lasagna-Beecher study using a placebo con-
trol and found the postoperative analgesic po tency of
nalorphine to compare with that of 10 mg of morphine. 

Studies on the analgesic effects of opioid antagonists
were limited over the next 25 years and often gave conflict-
ing results. In 1965, Lasagna15 reported that among patients
with postoperative pain, naloxone had a “strange biphasic
quality,” exerting the greatest analgesic effect at low doses
and becoming antianalgesic at higher doses. McClane and
Martin17 (1967), using a dog model to evaluate opioid anal-
gesics, found that nalorphine produced a partial opioid
analgesic response and that naloxone was inactive. The
authors suggested that opioid antagonists may have some
agonistic actions different from, and possibly initiated at a

different site than, those of morphine. This mechanism of
opioid antagonist analgesic versus hyperalgesic actions still
remains under debate. 

The 1975 discovery of opioid receptors and endogenous
opiates in the human brain led to renewed interest in opi-
oid and opioid antagonist pharmacology. Levine and col-
leagues18 (1978) reported that naloxone given to patients
with dental pain resulted in significantly greater increases in
pain intensity than placebo controls. In retrospect, the
naloxone dose used in their study was rather high, and the
results support Lasagna’s earlier finding of a biphasic
response to naloxone for postoperative pain. Levine et al.19

later published a second study using a dental pain model
and also observed this biphasic response to naloxone. That
is, naloxone at low doses (0.4 and 2 mg) produced analge-
sia, while higher doses (7.5 and 10 mg) of naloxone pro-
duced the more expected hyperalgesia (Table 2).

The 1970s ended with animal experiments that were
inconclusive as to the analgesic action of opioid antago-
nists. Intracerebral naloxone microinjected into the third
ventricle, the medulla, and the periaqueductal gray of the
midbrain of rats did not produce a consistent analgesic
response.20 Holaday and Belenky21 found that low-dose
naloxone resulted in analgesia in a rat experimental pain
model, while higher naloxone doses produced hyperal-
gesia, consonant with the experiments of Levine et al.19

The research of the most recent 25 years has benefited
from improved cell culture and receptor pharmacology
techniques, with much investigation of low-dose opioid
antagonists as possible analgesic agents. 

basic science evidence

This discussion will first focus on the discovery of opi-
oid excitatory processes and then summarize in vivo ani-
mal pain and pharmacology studies, which provided
direction for subsequent in vitro electrophysiologic and
biochemical investigations. Following that, more current
preclinical research will be reviewed, with emphasis on
understanding the mechanisms of the analgesia-enhance-
ment effects of low-dose opioid antagonists and an eye
toward clinical translations of these concepts that will
improve chronic pain management. For the sake of this
discussion, opioid antagonist enhancement of analgesia
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Table 1. Analgesic potency of nalorphine compared with morphine for postoperative pain*

Number of patients Drug and dose/70 kg Percent pain relief 

19 Nalorphine 5 mg 28 percent 

35 Nalorphine 10 mg 64 percent 

35 Morphine 10 mg 74 percent

*Lasagna and Beecher; 1954. Published with permission of ASPET. 



will be considered the primary therapeutic innovation
and clinical goal. Other potential therapeutic benefits of
low-dose opioid antagonists, including decreased opioid
side effects, physical dependence, and tolerance, are
important but are not our focus. Furthermore, to provide
subject clarity the many terms used throughout earlier lit-
erature to describe enhanced nociception (i.e., excitation,
hyperalgesia, pain enhancement, antianalgesia, pronoci-
ception, and allodynia) will be used interchangeably. It is
understood that this approach varies from traditional
descriptive terminology of pain and does not recognize
important differences in nociceptive assays and experi-
mental paradigms.

discovery and pharmacologic characterization 

of opioid excitatory processes 

While the analgesic actions of opioid agonists have been
utilized clinically with confidence since antiquity and stud-
ied in detail for over a century, interest in opioid excitatory
actions has lagged behind, as has clinical application.
Animal and clinical reports that opioid antagonists produce
both analgesia and hyperalgesia provided the most impor-
tant “paradoxical” observations and have driven the consid-
erable effort toward understanding the neuropharmacolog-
ic mechanisms of opioid excitatory actions.15,19-25

Four decades’ worth of preclinical pharmacologic evi-
dence for opioid excitatory actions indicates that systemic
opioid agonists and antagonists produce either analgesia
or hyperalgesia in several animal models of nociception.
The earliest direct pharmacologic demonstration of opi-
oid agonist excitatory actions resulted from experiments
in the decerebrate and spinalized decerebrate dog.26,27

Profound hyperalgesic actions of opioid agonists were
demonstrated using changes in skin-twitch reflex follow-
ing brainstem drug infusions as the experimental para-
digm. Further, these studies provided evidence for CNS
opioid excitatory processes, since naloxone produced inde-
pendent analgesic effects and antagonized both the

analgesic and hyperalgesic actions of opioid agonists. Both
inhibitory and excitatory actions of opioids have been subse-
quently demonstrated following systemic, intrathecal, and
brainstem injections in rodents. 

The neuropharmacology of opioid excitatory actions is
not fully understood, and description of the phenomena
has varied considerably depending upon the experimen-
tal model and whether endogenous neuropeptides were
studied in combination with exogenous drugs. The
research efforts of many investigators have contributed to
the current understanding of differential excitatory versus
inhibitory actions of opioid agonists and antagonists.
Several important neuropharmacologic models have
been developed, including 1) brainstem opioid hyperal-
gesic processes,26-31 2) the dual-system hypothesis of pain
perception involving a putative endogenous opioid sys-
tem that is antagonistic to analgesia,25,32-35 3) an endoge-
nous dynorphin “antianalgesia” system,36-40 and 4) presy-
naptic autoinhibition of endogenous hyperalgesic opioid
peptides.41 Taken together, this diverse literature demon-
strates that distinct excitatory versus inhibitory actions of
opioid agonists occur at extremely low versus higher
doses, respectively. Conversely, antiexcitatory versus
anti-inhibitory actions of opioid antagonists occur at
extremely low versus higher doses, respectively. The
resultant biphasic dose-response curves (Figure 1) for
opioid agonists and antagonists demonstrate the concept
that opioid drugs elicit hybrid actions on nociception,
which depends upon the dynamic balance of CNS excita-
tory versus inhibitory processes. Although the existence
of opioid excitatory processes had been established dur-
ing the 1980s, there was no model to explain mecha-
nisms of opioid excitatory actions and no direction for
future clinical translation of this knowledge.

opioid antagonist enhancement 

of opioid agonist analgesia 

In addition to the paradoxical analgesic effects of opioid
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Table 2. Analgesic dose response of naloxone on postoperative pain19

Postoperative pain score

(0 = no pain, 10 = worst pain imaginable)
Naloxone dose (mg)

4 0 (placebo)

2.2 0.4

1.8 2

7 7.5

6.8 10

Published with permission of Nature.



antagonists already discussed, several studies found para-
doxical hyperalgesic effects of opioid agonists4 when they
were given chronically or acutely in low doses. Researchers
also found that low-dose naloxone enhanced the analgesic
actions of opioid agonists.42-44 To take clinical advantage of
this evolving knowledge required a succinct pharmacologic
model consistent with established neurobiochemical mech-
anisms of opioid actions. During a decade-long series of
experiments, Crain and Shen45-66 (Albert Einstein College of
Medicine in the Bronx) studied the effects of opioid agonist
and antagonist cotreatment of nociceptive sensory neurons
in vitro and in vivo in mice. This systematic research effort
produced an innovative “bimodal opioid modulation” neu-
robiochemical model which provides a foundation for
future therapeutic applications related to opioid excitatory
pharmacology. Electrophysiologic studies of opioids on
dorsal root ganglion (DRG) sensory neuron cultures
demonstrated not only known opioid inhibitory (analgesic)
actions mediated by Gi- and Go-coupled opioid receptors
but also previously unrecognized excitatory actions mediat-
ed by Gs-coupled opioid receptors.45,58-60,67 Detailed
description of complex electrophysiologic experiments is
beyond this review, and our discussion will focus on funda-
mental concepts that bring more clarity to potential clinical
applications. A simplified diagram for the “bimodal modula-
tion” model of opioid actions is presented in Figure 2; more
detailed descriptions of this model are presented in research
articles on the subject.45-69

Briefly, opioid agonists are proposed to act acutely via
bimodal modulation of neuronal membrane calcium-ver-
sus-potassium conductance and resultant action potential
duration (APD) of DRG sensory neurons.45,55 This bimodal
modulation of APD is influenced by activation of neuronal
membrane opioid receptors that are coupled to intercon-
vertible intracellular G protein–adenylate cyclase second-
messenger systems. Because opioid receptors are abun-
dantly distributed on the membranes of cell bodies as well
as on the axonal terminals of immature nociceptive DRG
neurons in culture, an opioid-induced decrease in the dura-
tion of the Ca2+-dependent component of the DRG neuron
APD will result in decreased presynaptic release of trans-
mitters mediating afferent pain signals to the spinal cord.
Conversely, an opioid-induced increase in the APD will
increase presynaptic transmitter release, resulting in
increased pain signals. Depending upon the dynamic state
of the G protein system, modulation of the APD by opioid
agonists may occur in either Gi- or Go-coupled inhibitory
(analgesia) or Gs-coupled excitatory (hyperalgesia) modes.
APD modulation by this dynamic system is further influ-
enced by acute versus chronic opioid agonist exposure and
relative affinities of opioids for the inhibitory versus excita-
tory forms of the opioid membrane receptor.46,55,59 In the
DRG electrophysiologic assay, low concentrations of
bimodal opioid agonists have excitatory actions, high con-
centrations produce inhibitory effects, and intermediate
concentrations result in hybrid/variable effects. Selective
blockade of opioid agonist excitatory effects was demon-
strated by cotreatment with picomolar concentrations of
naloxone or naltrexone. This selective antagonism of opi-
oid excitatory receptors resulted in attenuation of the exci-
tatory action of opioid agonists and enhancement of their
inhibitory (analgesic) potency.48,57,64 These in vitro studies
provided insight toward clinical translation of opioid excita-
tory pharmacology and future improvement in clinical effi-
cacy and safety of opioid narcotics. 

Subsequent behavioral tail-flick assays in mice by
Crain and Shen48,55-57,66 confirmed the analgesia-enhance-
ment effects of low-dose opioid antagonists on opioid
agonist analgesia. Other investigators have demonstrated
enhancement of opioid agonist analgesic potency via
low-dose opioid antagonists in animal studies, although
the magnitude and character of the response are influ-
enced somewhat by experimental variables (i.e., rodent
species, gender, age, nociceptive assay, and dose).70-79

Figure 3 presents an exemplary time-action curve for the
morphine analgesia-enhancing effects of a low-dose opi-
oid antagonist in a rodent model of nociceptive pain.
More recent preclinical in vitro and in vivo laboratory
studies are further refining our understanding of the neu-
robiochemical mechanisms of opioid excitatory pharma-
cology, as well as of the efficacy of low-dose opioid ago-
nists and antagonists in models of neuropathic pain
syndromes.73-79
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Figure 1. Bimodal hyperalgesic vs. analgesic effects of

morphine and naltrexone microinjections into the brain-

stem of rodents. These data demonstrate the concept that

opioid drugs elicit hybrid actions on nociception with

resultant biphasic dose-response curves for the hyperal-

gesic (excitatory) vs. analgesic (inhibitory) actions of

opioid agonists at extremely low vs. higher doses, respec-

tively. Conversely, antiexcitatory (analgesic) vs. anti-

inhibitory (hyperalgesic) actions of opioid antagonists

occur at extremely low vs. higher doses, respectively.



current clinical evidence 

A handful of clinical studies and observations from the
past 25 years have suggested that opioid antagonists may
enhance opioid agonist analgesia. During clinical evaluation
of the postoperative analgesic effects of buprenorphine,
Schmidt and colleagues42 treated patients exhibiting break-
through postoperative pain with naloxone (80 to 400 mg),
resulting in long-lasting pain relief (median duration of 22
hours). Levine and colleagues43 examined the possible
analgesic actions of naloxone using a human model of
dental pain. In their earliest study, 90 patients with post-
operative dental pain were given either 400 mg or 1,000
mg doses of naloxone in a double-blind manner.
Compared with placebo controls, naloxone (400 and
1,000 mg) produced a significant decrease in pain intensi-
ty, suggesting an analgesic effect on naloxone’s part.
Subsequent clinical studies by this group examined the
opioid-enhancing effect of naloxone for pentazocine and
morphine in 105 patients, using the same double-blind
postoperative dental pain model. The combination of 400
mg of naloxone with 60 mg pentazocine produced signif-
icantly greater analgesia than pentazocine or 15 mg of
morphine alone, suggesting an opioid-enhancing effect
of naloxone. The combination of 400 mg of naloxone with
8 mg of morphine, however, produced less analgesia than
morphine administered alone. Although this apparent dis-
crepancy between naloxone’s analgesia-enhancement
effects with pentazocine and morphine was not readily
explained, the authors speculated that the analgesia-
enhancing effect of naloxone was opioid specific. 

Clinical interest in the possible enhancement of opioid
analgesic effects by low-dose opioid antagonists has been
stimulated by anecdotal case reports and encouraging

results from several clinical studies using different “anal-
gesia efficacy versus side effects” paradigms.

case reports 

Cruciani et al.10 published a case report demonstrating
the analgesia-enhancing effect of the oral opioid antago-
nist naltrexone with methadone in a patient with chronic
and resistant painful diabetic neuropathy. The addition of
oral naltrexone 1 mg BID resulted in dramatic pain relief,
accompanied by a 16 percent dose reduction of methadone. 

Another case report describes a patient with chronic
refractory pain who was treated with combined intrathe-
cal morphine and low-dose opioid antagonist (nalox-
one).80 After multiple treatment modalities failed to
relieve severe post-laminectomy radicular pain, the
patient remained in excruciating pain, with related
depressive symptoms. The patient was treated with a
combination of intrathecal morphine (2 mg) and low-
dose naloxone (20 ng) to test the concept that selective
antagonism of excitatory opioid receptor function at the
level of the spinal cord may provide relief for this type of
chronic neuropathic pain. Within 15 to 30 minutes, the
patient reported onset of persistent pain relief, particular-
ly over the most aggravated region of referred lower
extremity pain (40 to 50 percent reduction in visual

299Journal of Opioid Management 2:5 n September/October 2006

Figure 2. Bimodal modulation model of opioid agonist

actions on membrane APD of DRG sensory neurons.

Electrophysiologic studies of opioids on DRG sensory neu-

ron cultures demonstrate both opioid inhibitory (analgesic)

actions (mediated by Gi- and Go-coupled opioid receptors)

and excitatory actions (mediated by Gs-coupled opioid

receptors). Published with permission of JPSM and Elsevier. 

Figure 3. Exemplary time-action curves for the mor-

phine-analgesia-enhancing effects of low-dose opioid

antagonist in a rodent model of nociceptive pain.

Behavioral tail-flick assays in mice and rats confirm the

analgesia-enhancement effects of low-dose opioid antag-

onists on opioid agonist analgesia.



analogue score one hour after the dose). Following 48
hours of close clinical observation of repeated intrathecal
trials, a continuous intrathecal infusion of morphine with
ultra-low-dose naloxone was initiated, and acceptable
pain control was maintained through this method. The
enhanced analgesia (60 to 80 percent improvement by
patient report) provided by small doses of intrathecal
morphine and naloxone continued for several months. 

clinical studies 

Perioperative pain. Low doses of opioid antagonists
have enhanced, diminished, or had no effect on morphine
analgesia in the perioperative setting, depending upon the
drug administration regimen and pharmacokinetic character-
istics of the studied antagonist. Gan and colleagues81 studied
the effects of naloxone when combined with patient-con-
trolled analgesia (PCA) morphine for control of narcotic side
effects and post-hysterectomy pain. Surgical patients
received either a 0.25 mg/kg/h or 1 mg/kg/h dose of nalox-
one as a double-blind infusion for postoperative pain, allow-
ing unlimited PCA morphine for pain relief and using a
placebo control group. While the study objective was to
reduce opioid-related side effects with the naloxone infu-
sion, the authors discovered by serendipity that although all
groups of patients had excellent pain relief, the cumulative
(over 24 hours) PCA morphine doses were the lowest in the
low-dose naloxone group (Figure 4). This opioid-sparing
effect of naloxone suggested a morphine-analgesia-enhanc-
ing effect of naloxone, and the authors proposed that “the
conventional understanding of naloxone acting as a direct
postsynaptic opioid antagonist may be flawed.”81

Joshi and colleagues82 used a similar postoperative pain
model to investigate the opioid-related side effects of a

long-acting oral opioid antagonist, nalmefene. At the end of
surgery, patients received either one of two doses of nalme-
fene or a saline placebo, and all patients had access to PCA
morphine for postoperative pain relief. The study showed
that although morphine consumption was similar in all
groups, patients who received nalmefene had significantly
lower pain scores during the 24-hour study period. 

Sartain and colleagues83 recently completed a double-
blind study of postoperative pain using PCA morphine
for pain relief, comparing morphine alone with morphine
plus naloxone 13 mg given with each PCA bolus dose.
They found no difference in pain relief or total 24-hour
morphine dose between the two groups. Of note, this
study differs from the previous work of Gan et al.81 in that
slightly higher doses of naloxone were given, and nalox-
one was given in boluses rather than as a continuous
infusion. The authors concluded that if low-dose nalox-
one is to have opioid-enhancing effects, it should be
given as an infusion or long-acting oral agent. Using a
similar study design, Cepeda et al.84 reported no clinical
benefit, and an increase in morphine consumption, when
naltrexone 13 mg was added to each PCA morphine bolus.
In contrast to the single-gender and single-surgery study by
Sartain et al.,83 this study recruited male and female
patients undergoing a variety of surgical procedures. 

In a prospective, double-blind, randomized, placebo-
controlled clinical trial of postoperative pain in children,
continuous low-dose naloxone infusions were added to
PCA morphine.85 Low-dose naloxone infusions sustained
morphine-induced analgesia, reducing the incidence and
severity of opioid-induced side effects. The authors con-
cluded that when PCA morphine is chosen for the treat-
ment of postoperative pain, clinicians should consider
starting a concomitant low-dose naloxone infusion. 
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Figure 4. Mean (SEM) cumulative postoperative morphine dose vs. time. *p < 0.05 for both low-dose or high-dose

naloxone regimens compared with placebo. Published with permission of Anesthesiology.



When these PCA-morphine-based clinical studies are
considered together, it appears that enhancement of opi-
oid agonist analgesia may be most effective with sus-
tained antagonism versus intermittent blockade of opioid
excitatory actions. As seen in preclinical animal studies,
several clinical variables may influence the effectiveness
of introducing low-dose opioid antagonists to PCA mor-
phine regimens. Importantly, these early postoperative
pain studies consistently demonstrate that combining a
low-dose opioid antagonist with morphine is safe and
may be associated with diminished clinical side effects. 

Surgical pain. Recently we completed a pilot study of the
effects of low-dose naloxone infusions on the ability of mor-
phine to decrease minimum alveolar concentration (MAC) of
a potent volatile anesthetic, desflurane.86 Patients undergoing
abdominal hysterectomy were enrolled in a randomized,
double-blind, placebo-controlled study of the effects of
extremely low doses of naloxone on the MAC-reduction
effects of morphine. Low doses of naloxone consistently
enhanced the analgesic effects of morphine, as reflected in
decreased MAC of desflurane (Table 3). There were no
apparent signs of reduced morphine analgesia, toxicity, or
hemodynamic compromise throughout three hours of gener-
al anesthesia and completion of the surgical procedures.

Chronic pain. The first large-scale, Phase II, double-
blind, placebo-controlled study of low-dose oral naltrexone
with oxycodone (Oxytrex) has recently been completed in
patients with chronic osteoarthritis pain.87 This multicenter
study evaluated 243 patients randomized to receive place-
bo, oxycodone QID, Oxytrex (oxycodone plus 1 mg nal-
trexone) QID, or Oxytrex BID. The daily oxycodone dose
was the same for all active treatment groups, although the
Oxytrex BID group received only 2 mg/d, compared with 4
mg/d for the Oxytrex QID group. Oxytrex twice daily
 produced pain relief that was better than that provided by
placebo or oxycodone QID (Table 4). No difference
between groups was noticed with regard to adverse events
or opioid-related side effects. The authors concluded that
opioid enhancement by low-dose naltrexone may occur in
humans, and longer-treatment trials are ongoing.

In a recently completed Phase III clinical study of patients
with chronic low back pain, Oxytrex demonstrated equiva-
lent pain reduction to oxycodone.88 Patients titrated them-
selves to adequate analgesia or intolerable side effect.
Importantly, Oxytrex maintained equivalent analgesic effica-
cy, although the doses of oxycodone combined with low-
dose naltrexone were significantly lower than of the control
oxycodone alone. Several large-scale clinical trials are under
way and/or planned for future development of combined
low-dose opioid antagonist and opioid agonist formulations. 

A pilot clinical trial of combined intrathecal morphine and
oral naltrexone in refractory chronic pain has been conduct-
ed.89 Patients with chronic neuropathic pain and indwelling
intrathecal drug delivery systems were enrolled in a random-
ized, double-blind, placebo-controlled study of the effects of
extremely low doses of oral naltrexone on pain relief pro-
duced by intrathecal morphine. After baseline evaluations
were performed using continued intrathecal morphine
alone, patients were challenged twice daily, for seven days,
with oral placebo or low-dose naltrexone during continued
intrathecal morphine infusions. Oral naltrexone exhibited
dose-dependent enhancement of intrathecal morphine anal-
gesia that persisted for the entire week. No clinical evidence
of decreased intrathecal morphine analgesia (i.e., antago-
nism) or of serious side effects were observed with the addi-
tion of oral naltrexone. Although consistent enhancement of
pain relief was observed, the small number of refractory
chronic patients studied precludes definitive conclusions
about the efficacy of combining low-dose naltrexone with
intrathecal morphine. Further studies using this unique clini-
cal model are indicated, but they will be difficult to conduct
in this complex patient population. 

conclusion 

In summary, clinical evidence to support the use of
low-dose opioid antagonists as analgesia-enhancing
agents has been demonstrated in patients with surgical,
postoperative, and chronic neuropathic pain. As in pre-
clinical animal studies, the magnitude of response is
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Table 3. Effects of low-dose naloxone infusion on morphine MAC-reduction actions 

Naloxone dose (ng/kg/hr) 
MAC determination (n = number 

of crossovers per group) 

Average DES (percent) (n = number 

of subjects per group) 

Placebo 6.93 ± 0.05 (n = 4) 6.20 ± 0.56 (n = 8) 

0.15 4.60 ± 0.60 (n = 3)* 4.53 ± 0.34 (n = 8) 

0.46 4.38 ± 0.05 (n = 6)* 4.45 ± 0.20 (n = 8) 

4.60 4.54 ± 0.27 (n = 5)* 4.63 ± 0.32 (n = 8)

15.4 5.33 ± 0.88 (n = 3)* 5.28 ± 0.46 (n = 8) 

*Significantly different from placebo (one-way ANOVA, p = 0.05); MAC = minimum alveolar concentration; DES = desflurane.



influenced by clinical trial variables, particularly opioid
agonist and antagonist dosing regimens. Thus far, there
has been no apparent enhanced risk of side effects when
low-dose opioid antagonists are combined with clinical
doses of opioid agonists or other anesthetics. 

An evolving understanding of opioid excitatory pharma-
cology has been driven by decades of confusing  clinical
observations followed by focused in vivo and in vitro investi-
gations of the neuropharmacologic mechanisms responsible
for the apparent bimodal actions of opioid agonists and
antagonists. Dose-dependent inhibitory-analgesic and exci-
tatory-hyperalgesic actions of opioid agonists have been
demonstrated in animal and neuronal cell culture experi-
ments. The excitatory versus inhibitory actions of opioids
involve dynamic neuronal G protein–adenylate cyclase intra-
cellular biochemical signaling mechanisms. Enhancement of
opioid agonist analgesia by low-dose opioid antagonists has
been shown in several animal and clinical models of pain.
Clinical translation of this novel pharmacology has been
focused on enhancement of opioid agonist analgesia by
ultra-low-dose opioid antagonists in the treatment of periop-
erative and chronic pain. Although the clinical paradigms dif-
fer, when viewed together the available literature strongly
supports the concept that ultra-low-dose opioid antagonists
can enhance the analgesic efficacy of opioid agonists. This
exciting breakthrough in the therapeutic management of
pain deserves further, detailed clinical and laboratory evalua-
tion. While enhanced side effects of the combination of opi-
oid agonists and low-dose opioid antagonists have not been
reported, cautious clinical application is warranted while
safety and efficacy profiles of combination drug formulations
are documented in large, controlled clinical trials. 
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