Open Access Open Access  Restricted Access Subscription or Fee Access

Early pain, stress, and opioid use following traumatic injury

Danielle A. Kessler, Heather E. Webber, PhD, Robert Suchting, PhD, Charles E. Green, PhD, John A. Harvin, MD, MS, Angela M. Heads, PhD, Shweta Kapoor, MD, PhD, Jin H. Yoon, PhD, Scott D. Lane, PhD, Joy M. Schmitz, PhD, Angela L. Stotts, PhD

Abstract


Objective: Prescription opioids are an effective pain treatment strategy but can lead to long-term opioid misuse. Identifying at risk patients during hospitalization can inform the development of prevention interventions post-discharge. Using the Opioid Risk Tool (ORT) as a screening measure, this study predicted factors associated with pain and opioid use at 2 weeks post-discharge in trauma patients.

Design: A quality improvement prospective study design was used.

Setting: Participant recruitment took place at an inpatient Level 1 trauma center in Houston, Texas.

Participants: Participants (n = 103) were patients admitted to the adult trauma service. Patients completed the ORT in the hospital and a survey at 2 weeks post-discharge.

Main outcome measure: The survey assessed pain intensity and interference, injury-related stress, medication use, and need for additional pain treatment. Wilcoxon–Mann–Whitney U test, the Spearman rank-order correlation, and chi-square test of independence tested the ORT as a predictor of follow-up outcomes. Post hoc analyses relied on logistic and quantile regression.

Results: The ORT identified 15.5 percent of patients at high risk for opioid-related aberrant behavior. Survey results indicated high percentages of patients reporting moderate to severe pain (79.6 percent), pain interference (77.9 percent), taking pain pills (59.6 percent), experiencing stress (76.9 percent), and needing pain treatment (52.4 percent). The ORT predicted injury-related stress with the high-risk category having higher stress levels than low risk (Z = 2.518, p = 0.012).

Conclusion: Risk of opioid misuse assessed in hospitalized trauma patients was associated with injury-related stress reported post-discharge. This highlights the importance of including stress assessments in follow-up appointments.

 


Keywords


Opioid Risk Tool, traumatic injury, injury related stress, trauma outcome, opioid use

Full Text:

PDF

References


Berben SAA, Meijs THJM, van Dongen RTM, et al.: Pain prevalence and pain relief in trauma patients in the accident & emergency department. Injury. 2008; 39(5): 578-585. DOI:10.1016/j.injury.2007.04.013.

Trevino CM, Essig B, deRoon-Cassini T, et al.: Chronic pain at 4 months in hospitalized trauma patients: Incidence and life interference. J Trauma Nurs. 2012; 19(3): 154-159. DOI:10.1097/JTN.0b013e318261d304.

Rivara FP, MacKenzie EJ, Jurkovich GJ, et al.: Prevalence of pain in patients 1 year after major trauma. Arch Surg. 2008; 143(3): 282-287. DOI:10.1001/archsurg.2007.61.

Chaudhary MA, Schoenfeld AJ, Harlow AF, et al.: Incidence and predictors of opioid prescription at discharge after traumatic injury. JAMA Surg. 2017; 152(10): 930-936. DOI:10.1001/jamasurg.2017.1685.

Helmerhorst GTT, Vranceanu AM, Vrahas M, et al.: Risk factors for continued opioid use one to two months after surgery for musculoskeletal trauma. J Bone Jt Surg Ser A. 2014. DOI:10.2106/JBJS.L.01406.

Holman JE, Stoddard GJ, Higgins TF: Rates of prescription opiate use before and after injury in patients with orthopaedic trauma and the risk factors for prolonged opiate use. J Bone Jt Surg Ser A. 2013. DOI:10.2106/JBJS.L.00619.

Rosenbloom BN, McCartney CJL, Canzian S, et al.: Predictors of prescription opioid use 4 months after traumatic musculoskeletal injury and corrective surgery: A prospective study. J Pain. 2017. DOI:10.1016/j.jpain.2017.03.006.

Alghnam S, Castillo R: Traumatic injuries and persistent opioid use in the USA: Findings from a nationally representative survey. Inj Prev. 2017; 23(2): 87-92. DOI:10.1136/injuryprev-2016-042059.

Ducharme J, Moore S: Opioid use disorder assessment tools and drug screening. Mo Med. 2019; 116(4): 318-324.

Webster LR, Webster RM: Predicting aberrant behaviors in opioid-treated patients: Preliminary validation of the opioid risk tool. Pain Med. 2005; 6(6): 432-442.

Clark MR, Hurley RW, Adams MCB: Re-assessing the validity of the opioid risk tool in a tertiary academic pain management center population. Pain Med. 2018; 19(7): 1382-1395. DOI:10.1093/pm/pnx332.

Jones T, Lookatch S, Moore TM: Validation of a new risk assessment tool: The brief risk questionnaire. J Opioid Manag. 2015; 11(2): 171-183. DOI:10.5055/jom.2015.0266.

Jones T, Moore TM, Levy JL, et al.: A comparison of various risk screening methods in predicting discharge from opioid treatment. Clin J Pain. 2012; 28(2): 93-100. DOI:10.1097/AJP.0b013e318225da9e.

Moore TM, Jones T, Browder JH, et al.: A comparison of common screening methods for predicting aberrant drug-related behavior among patients receiving opioids for chronic pain management. Pain Med. 2009; 10(8): 1426-1433. DOI:10.1111/j.1526-4637.2009.00743.x.

Cheatle MD, Compton PA, Dhingra L, et al.: Development of the revised opioid risk tool to predict opioid use disorder in patients with chronic nonmalignant pain. J Pain. 2019. DOI:10.1016/j.jpain.2019.01.011.

Chou R, Gordon DB, De Leon-Casasola OA, et al.: Management of postoperative pain: A clinical practice guideline from the American pain society, the American society of regional anesthesia and pain medicine, and the American society of anesthesiologists’ committee on regional anesthesia, executive commi. J Pain. 2016; 17(2): 131-157. DOI:10.1016/j.jpain.2015.12.008.

Dowell D, Haegerich TM, Chou R: CDC guideline for prescribing opioids for chronic pain—United States, 2016. MMWR Recom Rep. 2016; 65: 1-49. DOI:10.15585/mmwr.rr6501e1.

Leukhardt WH, Golob JF, McCoy AM, et al.: Follow-up disparities after trauma: A real problem for outcomes research. Am J Surg. 2010; 199(3): 348-353. DOI:10.1016/j.amjsurg.2009.09.021.

Cella D, Riley W, Stone A, et al.: Initial item banks and first wave testing of the Patient–Reported Outcomes Measurement Information System (PROMIS) network: 2005–2008. J Clin Epidemiol. 2010; 63(11): 1179-1194. DOI:10.1016/j.jclinepi.2010.04.011.Initial.

Bartels K, Mayes LM, Dingmann C, et al.: Opioid use and storage patterns by patients after hospital discharge following surgery. PLoS One. 2016; 11(1): 1-10. DOI:10.1371/journal.pone.0147972.

Harvin JA, Green CE, Vincent LE, et al.: Multi-modal analgesic strategies for trauma (MAST): Protocol for a pragmatic randomized trial. Trauma Surg Acute Care Open. 2018; 3(1). DOI:10.1136/tsaco-2018-000192.

Assmann SF, Pocock SJ, Enos LE, et al.: Subgroup analysis and other (mis)uses of baseline data in clinical trials. Lancet. 2000; 355(9209): 1064-1069. DOI:10.1016/S0140-6736(00)02039-0.

Pocock SJ, Assmann SE, Enos LE, et al.: Subgroup analysis, covariate adjustment and baseline comparisons in clinical trial reporting: Current practice and problems. Stat Med. 2002; 21(19): 2917-2930. DOI:10.1002/sim.1296.

3.5.1. RDCT: A language and environment for statistical computing. R Found Stat Comput. 2018; 2. Available at https://www.R-project.org. Accessed August 1, 2020.

Hothorn T, Hornik K, Van de Wiel MA, et al.: A lego system for conditional reference. Am Stat. 2006; 60(3): 257-263. DOI:10.1198/000313006X118430.

Revelle W: Psych: Procedures for Psychological, Psychometric, and Personality Research. Northwestern University, Evanston, Illinois. R package version 2.0.12, 2020. https://CRAN.R-project.org/package=psych. Accessed February 15, 2021.

Koenker R: Quantreg: Quantile Regression. R package version 551. 2019.

Clarke H, Soneji N, Ko DT, et al.: Rates and risk factors for prolonged opioid use after major surgery: Population based cohort study. BMJ. 2014; 348(February): 1-10. DOI:10.1136/bmj.g1251.

Sun EC, Darnall BD, Baker LC, et al.: Incidence of and risk factors for chronic opioid use among opioid-naive patients in the postoperative period. JAMA Intern Med. 2016; 176(9): 1286-1293. DOI:10.1001/jamainternmed.2016.3298.

Blackburn-Munro G, Blackburn-Munro RE: Chronic pain, chronic stress and depression: Coincidence or consequence? J Neuroendocrinol. 2001; 13(12): 1009-1023. DOI:10.1046/j.0007-1331.2001.00727.x.

Stahlschmidt L, Rosenkranz F, Dobe M, et al.: Posttraumatic stress disorder in children and adolescents with chronic pain. Heal Psychol. 2020; 39(5): 463-470. DOI:10.1037/hea0000859.

Hah JM, Cramer E, Hilmoe H, et al.: Factors associated with acute pain estimation, postoperative pain resolution, opioid cessation, and recovery: Secondary analysis of a randomized clinical trial. JAMA Netw Open. 2019; 2(3): e190168. DOI:10.1001/jamanetworkopen.2019.0168.

Axén I, Bodin L, Bergström G, et al.: The use of weekly text messaging over 6 months was a feasible method for monitoring the clinical course of low back pain in patients seeking chiropractic care. J Clin Epidemiol. 2012; 65(4): 454-461. DOI:10.1016/j.jclinepi.2011.07.012.

Johansen B, Wedderkopp N: Comparison between data obtained through real-time data capture by SMS and a retrospective telephone interview. Chiropr Osteopat. 2010; 18: 1-7. DOI:10.1186/1746-1340-18-10.

Whitford HM, Donnan PT, Symon AG, et al.: Evaluating the reliability, validity, acceptability, and practicality of SMS text messaging as a tool to collect research data: Results from the feeding your baby project. J Am Med Informatics Assoc. 2012; 19(5): 744-749. DOI:10.1136/amiajnl-2011-000785.




DOI: https://doi.org/10.5055/jom.2022.0690

Refbacks

  • There are currently no refbacks.