

Epidural haloperidol enhances epidural morphine analgesia: Three case reports
Abstract
Keywords
References
Sloan PA: Oxymorphone in the management of pain. Ther Clinical Risk Manage. 2008; 4: 1-11.
Sloan PA: Neuraxial pain relief for intractable cancer pain. Curr Pain Headache Rep. 2007; 11: 283-289.
Ackerman WE, Juneja MM, Kaczorowski DM, et al.: A comparison of the incidence of pruritis following epidural opioid administration in the parturient. Can J Anaesth. 1989; 36: 388-391.
Iijima T, Ishiyama T, Kashimoto S, et al.: A comparison of three different concentrations of ropivacaine with fentanyl for patientcontrolled epidural analgesia. Anesth Analg. 2007; 105: 507-511.
Janssen PA: The evolution of the butyrophenones, haloperidol and trifluperidol, from meperidine-like 4-pheylpiperidines. Int Rev Neurobiol. 1965; 8: 221-263.
Greene MJ: Some aspects of the pharmacology of droperidol. Br J Anaesth. 1972; 44: 1272-1276.
Maltbie AA, Cavenar JO Jr, Sullivan JL, et al.: Analgesia and haloperidol: a hypothesis. J Clin Psychiatry. 1979; 40: 323-326.
Kotake Y, Matsumoto M, Ai K, et al.: Additional droperidol, not butorphanol, augments epidural fentanyl analgesia following anorectal surgery. J Clin Anesth. 2000; 12: 9-13.
Buttner M, Walder B, von Elm E, et al.: Is low-dose haloperidol a useful antiemetic? A meta-analysis of published and unpublished randomized trials. Anesth Analg. 2004; 101: 1454-1463.
Kest B, Mogil JS, Sternberg WF, et al.: Antinociception following 1,3-di-0-tolylguanidine, a selective sigma receptor ligand. Pharma Biochem Behav. 1995; 50: 587-592.
Martin WR, Eades CG, Thompson JA, et al.: The effects of morphine- and Nalorphine-like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther. 1976; 197: 517-532.
Hanner M, Moebius FF, Flandorfer A, et al.: Purification, molecular cloning, and expression of the mammalian sigma1- binding site. Proc Natl Acad Sci USA. 1996; 93: 8072-8077.
Terashvili M, Wu H, Moore RM, et al.: (−)-Morphine and (−)-morphine stereoselectivity attenuate the (−)-morphineproduced tail-flick inhibition via the naloxone-sensitive sigma receptor in the ventral periaqueductal gray of the rat. Eur J Pharmacol. 2007; 571: 1-7.
Su TP, Hayashi T: Understanding the molecular mechanism of sigma-1 receptors: towards a hypothesis that sigma-1 receptors are intracellular amplifiers for signal transduction. Curr Med Chem. 2003; 10: 2073-2080.
Chien CC, Pasternak GW: Functional antagonism of morphine analgesia by (−)-pentazocine: evidence for an antiopioid sigma-1 system. Eur J Pharmacol. 1993; 250: R7-R8.
Mei J, Pasternak GW: Modulation of brainstem opiate analgesia in the rat by sigma-1 receptors: a microinjection study. J Pharmacol Exp Ther. 2007; 322: 1278-1285.
Alonso G, Phan V, Guillemain I, et al.: Immunocytochemical localization of the sigma(1) receptor in the adult rat central nervous system. Neuroscience. 2000; 97: 155-170.
Cendan CM, Pujalte JM, Portillo-Salido E, et al.: Antinociceptive effects of haloperidol and its metabolites in the formalin test in mice. Psychopharmacology 2005; 182: 485-493.
Sloan PA, Hamann SR: Ultra low-dose opioid antagonists to enhance opioid analgesia. J Opioid Manage. 2006; 2: 295-304.
Whittemore ER, Ilyin VI, Woodward RM: Antagonism of N-methyl-D-aspartate receptors by sigma site ligands: potency, subtype-selectivity and mechanisms of inhibition. J Pharmacol Exp Ther. 1997; 282: 326-338.
Debonnel G, de Montigny C: Modulation of NMDA and dopaminergic neurotransmissions by sigma ligands: possible implications for the treatment of psychiatric disorders. Life Sci. 1996; 58: 721-734.
Ilyin VI, Whittemore ER, Guastella J, et al.: Subtype-selective inhibition of N-methyl-D-aspartate receptors by haloperidol. Mol Pharmacol. 1996; 50: 1541-1550.
Olschewski A, Brau ME, Hempelmann G, et al.: Differential block of fast and slow inactivating tetrodotoxin-sensitive sodium channels by droperidol in spinal dorsal horn neurons. Anesthesiology. 2000; 92: 1667-1676.
Ito K, Nishimura Y, Uji Y, Yamamoto T: Haloperidol effects on Na current in acutely isolated rat retinal ganglion cells. Jpn J Ophthalmol. 1997; 41: 221-225.
Fishbain DA, Cutler RB, Lewis J, et al.: Do the secondgeneration atypical neuroleptics have analgesic properties? A structured evidence-based review. Pain Med. 2004; 5: 359-365.
Thorn SE, Wattwil M, Kallander A: Effects of epidural morphine and epidural bupivacaine on gastroduodenal motility during the fasted state and after food intake. Acta Anaesthesiol Scand. 1994; 38: 57-62.
Nakata K, Mammoto T, Kita T, et al.: Continuous epidural, not intravenous, droperidol inhibits pruritus, nausea, and vomiting during epidural morphine analgesia. J Clin Anesth. 2002; 14: 1121-1125.
Lee IH, Lee IO: The antipruritic and antiemetic effects of epidural droperidol: a study of three methods of administration. Anesth Analg. 2007; 105: 251-255.
Eisenach JC, Hood DD, Curry R: Phase I human safety assessment of intrathecal neostigmine containing methyl- and propylparabens. Anesth Analg. 1997; 85: 842-846.
Grip G, Svensson BA, Gordh T, et al.: Histopathology and evaluation of potentiation of morphine-induced antinociception by intrathecal droperidol in the rat. Acta Anaesthesiol Scand. 1992; 36: 145-152.
DOI: https://doi.org/10.5055/jom.2008.0021
Refbacks
- There are currently no refbacks.